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PREFACE

This Note documents and updates a briefing first given in January 1988 on the sys-
tem-software aspects of the RAND Strategy Assessment System (RSAS). It reflects
RSAS changes incorporated as of August 1988 for release in the RSAS 3.5. It assumes famil-
iarity with the RSAS and was developed as only one part of a series of briefings and publica-
tions describing the RSAS and related analytic methodology. The bibliography suggests pub-
lications that should be read first. As is usual with briefing Notes, there is no attempt here to
be comprehensive or detailed.

The work described here was conducted by the RAND Strategy Assessment Center,
which is part of RAND’s National Defense Research Institute, a Federally Funded Research
and Development Center sponsored by the Office of the Secretary of Defense. The work has
been part of a continuing effort to develop and improve the RSAS under a project sponsored
by the Director of Net Assessment in the Office of the Secretary of Defense.

Dr. Davis is the Director of the RAND Strategy Assessment Center. Mr. Hall has
been the project leader for RSAS system software development and can answer difficult tech-
nical questions that relate more to software than to RSAS modeling architecture, RSAS sta-
tus, or applications. Both authors can be contacted at RAND in Santa Monica, California.
Their electronic-mail addresses are: pdavis@rand.org and edhall@rand.org.
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SUMMARY

. ‘\

” The RAND Strategy Assessment System (RSAS) was designed for analytic war
gaming. It is structured like a human military-political war game, but can be used in a num-
ber of different modes that include human play with all higher-level decisions introduced
interactively, closed model operations in which the entire war game is played out as a simu-
lation with no interventions, mostly closed operations in which an analyst or players inter-
rupt the simulation to make selected decisions or corrections, and various hybrid modes such
as that in which a human Blue team plays against an automated model representing Red (the

. *Red Agcnt"f{ Rivn:

This-briefing Note describes RSAS system software. It is a reasonably rigorous
description suitable for those concerned not only with the RSAS models but with their imple-
mentation as computer programs in a large and complex system. Users of the RSAS should
also find it useful, because many of the complications encountered by those users can only be
understood from a knowledge of software design. )
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REQUIREMENTS FOR RSAS SYSTEM SOFTWARE

Most of the requirements determining the system-software design were decided
upon by RAND based on general guidance from the sponsor, extensive conceptual modeling,
and certain visions of what technology should permit. This freedom to develop coherent
requirements was a major factor in the project’s success.

The conceptual model called for the RSAS to be structured as a military-political war
game in which models called Red, Blue, and Green “Agents” represent the Soviet Union, the
United States, and third countries, respectively, and in which a “Force Agent” (also called
CAMPAIGN) simulates physical processes resulting from decisions by Red, Blue, and
Green (e.g., processes such as the alerting, deploying, and combat operations of military
forces). Red and Blue Agents are hierarchically structured to correspond approximately to
real-world command-control structures with political-level authorities and a military hierar-
chy of commands translating objectives and strategy into operations plans. The political-
level models have a strategic world view and can make sweeping decisions involving objec-
tives, strategy, and escalation. The military-command-level models have more circumscribed
behaviors; they attempt to follow “war plans”—adaptively, to be sure, but strongly con-
strained by guidance.
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The conceptual model also called for a globally integrated system that would allow
users to see interactions across various boundaries of theater, type of warfare, military ser-
vice, and type of weapon—the very interactions that most models seek to approximate away
in the search for simplicity and division of effort.

Some of the other important requirements decided upon early in RSAS development
included an emphasis on extreme flexibilitry in many dimensions: the ability to substitute
humans and agents for one another, allowing for both gaming and analytic modes; the ability
to change a vast array of assumptions readily by varying not only parameters but the under-
lying rules and algorithms as well; and providing alternative perspectives and to some
degree alternative levels of resolution. The system also had to be functionally modular, since
different users would wish to focus on different nations, theaters, and types of conflict.

Another fundamental requirement was that of achieving as much transparency as pos-
sible within the state of the art. For example, it should be possible for nonprogrammer ana-
lysts (and to some extent senior officials) to review, understand, and change key assump-
tions. Toward this end there was a conscious effort to exploit newly emerging computer
technology, including workstation technology and various concepts about high-level program-
ming languages understandable to nonprogrammers.

There was also a requirement for a high level of system performance, because a major
objective was to permit extensive sensitivity analysis. We sought (and achieved) run times
of a few hours for multitheater wars with operation of both decision and simulation models,
and a few minutes for simulation of combat in a single theater over a period of perhaps 30
days. Finally, we required portability, because it was correctly anticipated that the RSAS
would be used in a variety of government agencies as well as RAND. Although the models
and most system software are indeed portable, the graphics software depends currently on
special features of Sun™ workstations, which are now rather inexpensive.

MAJOR FEATURES OF THE SOFTWARE APPROACH

Some of the most important features of the software design included: (1) using hier-
archical coprocesses to represent the natural hierarchical objects of the conceptual model; (2)
using a centralized data base for agent-to-agent communication (in preference, for example,
to message-passing in the sense of object-oriented programming languages) ; (3) building
a new interpretive language for knowledge-based modeling (RAND-ABEL®), (4) using the
C language for the numerically intensive and bookkeeping- and process-dominated Force-
Agent simulation; (5) special capabilities for saving and branching, and for conducting
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“lookaheads” within the course of a game run; (6) various special mechanisms for control
flow; and (7) exploitation of workstation technology.

To exploit workstation technology, we have used not only the multiwindow features

and mouse techniques of the Sun workstation, but have also developed a number of useful

general-purpose software tools for graphics, cross-referencing of variables, logging explana-
tions, examining and changing the source code, and allowing the analyst to examine and

change the values of parameters interactively. Thus, we have developed an entire environ-
ment for knowledge-based modeling and simulation on workstations.

FUNCTIONAL DESCRIPTION

The RSAS can be operated in a variety of modes: (1) supporting a human war game
in which players make all key decisions interactively and combat models are then
used to assess the results of those decisions; (2) as a closed or systemic model in
which decision models called agents substitute for human players; or (3) as a hybrid
in which, for example, a Blue human team plays against an automated Red Agent.

The knowledge-based decision models or human players issue orders to military
forces worldwide; a simulation model called Force Agent (or CAMPAIGN) then
acts upon these decisions; it is itself a large, complex, and integrated software sys-
tem consisting of models for many different types of warfare and geographical the-
aters representing processes such as alerting, deployment, maneuver, and combat.
Force Agent is structured largely as a two-player game, so the force orders of non-
superpowers are handled through Red and Blue.

The Force Agent is a time-step simulation, with the time-step duration varying
depending on conditions in the simulation.

In its automated mode the “garne” has as its decisionmaking entities Red, Blue,
and Green Agents, representing, respectively, the Soviet Union, the United States,
and nonsuperpower countries. The RSAS is an n-player game at the political level.

Red and Blue are composite models consisting of hierarchies of agents correspon-

ding approximately to the National Command Authority and several layers of mili-
tary commands. Green is a one-level composite model with submodels for each of

the nonsuperpower nations being treated.

Each of the decisionmaking entities or agents makes its decisions independently,
although constrained by guidance from above in the instance of subordinate military
commanders. Each agent has the opportunity to act whenever its “wakeup rules”
fire—that is, when conditions specified by wakeup rules and tested by the simula-
tion model are met. The conditions may be specified in terms of time, events, or oth-
er measures of the world state.
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Agents at different levels of the Red or Blue hierarchy can have quite varied characters. At
the top level, decisionmaking reflects a strategic world view and can involve fundamental
changes in objectives and strategy; at lower levels, decisionmaking corresponds to military
commanders attempting to carry out highly procedural plans (albeit branched and otherwise
adaptive plans).

The agents can conduct lookaheads to better assess alternative courses of action. A looka-
head consists of a game within a game in which, for example, the Red Agent uses the
RSAS to predict what may happen under a postulated strategy. The lookahead depends on
Red’s assumptions about the behavior of Blue, nonsuperpower countries, and various
parameters of the simulation. That is, the RSAS includes not only Red, Blue, and Green but
also alternative versions of these agents representing superpower assumptions—for
example, Red’s Blue.

The RSAS is extremely flexible in terms of the parameterization of models and the ability
of users to change the basic decision rules interpretively. Moreover, a special agent acting
on behalf of the analyst (Control Agent) can be used to change parameters in the course of
a game if and when conditions specified in rules arise—just as the analyst might otherwise
follow the game step by step and interrupt it to make changes when he saw the conditions
arising.

SOFTWARE CONSIDERATIONS

The decision-modeling portion of the RSAS consists of quasi-independent agents, with
Red and Blue having several hierarchical levels within their agents, and Green having a
single level. Each level of an agent is implemented by one or more coprocesses—a sort of
program within a program. Although coprocesses execute independently, they can be creat-
ed or removed by higher levels of the hierarchy, and communicate with each other via a
shared data base. Thus the RSAS is a variable-structure simulation: e.g., parts of the Red
or Blue Agent hierarchy are replaced if the situation warrants it, such as an escalation from
conventional to tactical nuclear warfare.

This process implementation provides for modularity, “script-like behavior” by some of the
military-level models in accord with the plan-following style of the conceptual models, and
the flexibility to easily change command structures or, within a given run, to change the
entire block of rules used to represent a given agent.

The decision models all draw on and contribute to a centralized data base. Modularity is
accomplished by access restrictions incorporated in the language and a Data Dictionary.
Thus, the model for a particular Red command cannot use the internal variables of other
Red commands or, much less, Blue commands, except by using a special syntax that high-
lights the violation of usual modularity. Message-passing is accomplished by one agent
writing to the data base and the appropriate recipient reading that message, again with
access restrictions. This has both advantages and disadvantages over the message-pass-
ing facilities provided in object-oriented programming languages.
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* The rules constituting the decision models are written in a new readable procedural
language for knowledge-based models, RAND-ABEL. By far the majority of the
rules are expressed in RAND-ABEL code as decision tables or tables of orders.
Because RAND-ABEL is understandable and interpretive (the latter facilitating a
gradual learning process), analysts who are not good programmers can review and
change the decision rules quickly during or between runs, without recompiling. The
RSAS simulation model is written largely in C, and partly in RAND-ABEL, which

i translates into C.

+ The RSAS is substantially modular in allowing users to focus on particular problems
of interest to them without necessarily operating the full global system. For exam-
ple, users may turn the decision models off and substitute simple sets of hard-wired
instructions as data prepared by filling out spreadsheets. They may then focus on
the combat simulation for one or more theaters. Alternatively, they may operate the
political models (national-command-level models) by themselves, specifying inputs
interactively that otherwise would come from the simulation model.

» RSAS system software includes an integrated environment for both developing deci-
sion models and conducting analytic war games and more conventional simulations.
This environment includes C and RAND-ABEL working under the UNIX™ operat-
ing system, and provides a mouse-and-menu-driven data editor, nested menus for
accessing the source code and data bases, an interpreter for RAND-ABEL, cross-
indexed source code, variable-resolution logs, graphics, and other tools. Some of
the graphics tools have been specialized to Sun workstations.

STATUS

The RSAS is now operational and is being used in a number of different applications
ranging from training-related and concept-generating gaming to analysis of alternative mili-
tary strategies and arms-control concepts. The RAND-ABEL language has proven highly
successful, and is used routinely by analysts who would find it counterproductive to work at
the level of computer code in more conventional languages. The larger environment that
includes not only RAND-ABEL but also the various software tools mentioned above is now
being used in other application domains and is being prepared (under the name RAND-
ABEL Modeling Platform, or RAMP) for general release in the public domain. RAND-
ABEL is also being extended to include a variety of features such as sets, lists. and struc-
tures. Although the current RSAS has many imperfections and there is a long list of addition-
al or different features we might like, we believe nonetheless that the RSAS will be viewed
from a historical perspective as having set new standards and introduced a variety of new !ﬁ
ideas for variable-structure knowledge-based simulation in complex problem domains. We ]
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expect both the RSAS and RAMP (including RAND-ABEL) to evolve gracefully and signifi-

cantly in the years ahead. Some of the more important software improvements will include
_ better integrating the RAND-ABEL and C language portions of the system, adding tools for
software engineering (e.g., tools to generate lists of module inputs and outputs), exterding
the RAND-ABEL language to include features useful in implementing object-oriented mod-
els, and adding tools for pre- and post-processing.




KEY FIGURES IN SYSTEM SOFTWARE ...........ccocoimiiiiincntenene st 2

TRANSLATING REQUIREMENTS INTO DESIGN .......cccocnmmmiiiiininicnnicninsreiee s 4
CONTENTS — “Requirements” and other ObJECHVES..........cccuvveurrrercrerrnirenesninnsniinesvensessinenns 6
CONSIDERATIONS IN SYSTEM SOFTWARE DESIGN...........cccecnimiiiiininininne e 8
AUTOMATED WARGAMING WITH THE RSAS (FUNCTIONAL PERSPECTIVE) ........... 10
TIME ADVANCES IN THE RSAS ...ttt sestsenentssssssssssassassnsssesesssens 12
GENERIC STRUCTURE OF RED AND BLUE AGENTS........ccccooviiinimninnierereneenenns 14
CONSIDERATION IN SYSTEM SOFTWARE DESIGN (CONT’D)....cccoccvenmenieninenncvcnennenne 16
CONTENTS — Programming lIanguage(s) .....cccccccervrrrerrrrreerereesrersensirneesesesssesssisssssesessessscnens 20
APPROACH TO PROGRAMMING LANGUAGES..........ccccccvmniieninirintinssssnsinssnssassiesensen 22
RSAS COMPOSITION BY PROGRAMMING LANGUAGE...........cccooivivevnnnniicrissennenninens 24
RSAS COMPOSITION BY SEPARATELY COMPILED PROGRAMS.........cccoevvvmninennene 26
CONTENTS — System-software architecture: Entities and Structures ...........ccccoveeveresiincinnsennes 28
RSAS SOFTWARE ENTITIES AND STRUCTURES ..........cccocvnmininininiinnininsesnensineesnns 30
MAJOR FEATURES OF SOFTWARE APPROACH...........coccvvniciniiinsienisrennssnnssossssissnsnnans 32
COPROCESSES .......oucemmrirrmnsimsimsisesisesssssssosasseissssmsssssessssssnssssessssesssesmsssssssssssasssasssssssssssssscs 34
ILLUSTRATIVE “FAMILY TREE” OF RSAS COPROCESSES ........ccccoceniniminnenreninniniinnens 36
AN ASIDE: TIES TO OBJECT-ORIENTED PROGRAMMING.........ccccceremrmnuncerneccenevrrinnenn 38
ACTUAL DATA FLOW: VIA WSDS AND A DATA DICTIONARY ......cccccovmnininnninniienens 42
CONTENTS — System-software architecture: Data floW.........ccccocveeerieninnenrencrseresinseoneennenne 44
PRINCIPAL HUMAN INTERFACES FOR DATA.......cccciiiniiitntececeenersresnsinensiene s 46
DATA FLOW AND INTERFACES IN RSAS (Master Diagram) .......ccccccocevieeiniiniinneiinncnnnne 48
OBJECTS OF DATA FLOW AND INTERFACES ........ccccoooiiiniiiniiiciieciee s 50
INTERACTING WITH THE RSAS DATA EDITOR.........cccocvvimmiiirercieicii s 52
INTERACTING WITH FORCE AGENT WITH CMENT ......ccocoiiniiiintiieeneeinrincsisiesenieens 54
THE RAND-ABEL INTERPRETER INTERFACE ........c.ccccooviiiiiiniiiiinnincinc e, 56
CONTROL AGENT ...ttt saesas s st saasbesa s sa st snsans e enes 58
CONTROL AGENT MODES ........ccoooiintrienitriiee st ss et st etsee e sren e e s et st ensssnes J0
COMPONENTS OF AN ANALYSTPLAN FILE.........ocooiinniniciinin i eaens s 62
DATA FLOW FOR USING THE SCENARIO GENFRATOR MECHANISM TO

SCHEDULE INPUTS......c.oootieetientetieeeei et eee st srsesessesseseene st ssessssssssesssassrssassnonns 64
DETAILS OF HUMAN INPUTS TO FORCE AGENT — SANDTABLING MODE............... 66
DETAILS OF HUMAN INPUTS TO FORCE AGENT — ANALYSIS MODE ....................... 68
NOTES ON FORCE AGENT INTERFACES ..........ccccoooiiiiiiieiniretce st 70
GRAPHICS INTERFACE ..ottt ettt ens s stosse st sens e ssasn sosenan 72




' DETAILS OF GRAPHICS INTERFACE.........cccoooiitieetietintiesetreieteeeesstre st s saresanesrneansnes 74
' POSSIBLE GRAPHICS DESIGN FOR FUTURE RSAS .......cccooiniininiienitin i 78
h SOURCES OF GRAPHICS DATA IN THE RSAS ..ot 80
a DETAIL OF LOGGING-TOOL DATA FLOW ..ottt sreeie e reenteiecsecsnssansanes 82
S SPECIAL CAPABILITIES FOR SAVING AND BRANCHING .......ccocciivimiinininiciieciesinnn 84
ILLUSTRATIVE SAVING AND BRANCHING WITHRSAS ..., 86

CONTENTS — System-software architecture: Control flow .........ccccevivivieiniinnnniniiiininnnnen, 88

RSAS CONTROL FLOW .....cuiiiiiiciieieiereeeressresenaieessesssesssesnsesnssesessensenes soesssnssnsssnsssnsaniesssesns 90

POLLING ORDER IN RSAS CONTROL FLOW .......oooiiieiiinineieninniiecitnceiinsistescesesnsennaneres 92

POLLING THE TREE OF RSAS COPROCESSES ..........cccccooovimiiiriieneiinnrnenseienes 94
ILLUSTRATIVE CONTROL FLOW IN RSAS SIMULATION .......ccccoovnimmimirninniinrininnennnnne 96
ILLUSTRATIVE CONTROL FLOW (CONT’D) ..c..covtiireninieceneniireeesnesnessnsnsssnnesssanesnsnenns 98

CONTENTS — The Man/machine environment ..........ccccoceererrrrneroecsiineemseosieomesnseisseensnsoses 100
MAN-MACHINE ENVIRONMENT .......cociiiiiinienrinnneeniesmentemesiessssssnimnsssesssessssssesssessssenses 102

RSAS TOOLS .......coeiteeterrerteee e st seiesaeseressesssaesaesseas st s st assnenssasseess anesanssusterasssesaresssssstens 104

CONTENTS — Current status of RSAS system SOftware ..........ccceevviniinninininninnnniiennenenn, 106

LIMITATIONS AND SHORTCOMINGS........coceievtiiinieeeeeenteneninstesensenstesissarostssnsssesresssenns 108

SELECTED COMMENTS ON RSAS AS SOFTWARE ..ottt 110

CONTENTS — REfEIENCES......oeerrieeieeeeriiireiieeieeseintneereeeeteseessetessesseessasssaesentesssssssosssssnnsornsesnes 112

REFERENCGES ...ttt cree s eestae s e e sessebeavaessesssaessesesasnsesseessassunesasesanesntessesnasssassnsos 114

APPENDIX — Terminological EQUIVAIENCES.......ccvvieriereiciriireirririve ettt e sniees 115

ANNOTATED BIBLIOGRAPHY .....ooiioiiieciinseie et tesnnre e seeseosettes sennscosnnasassaressessses vos 117

o




OVERVIEW OF RSAS SYSTEM SCFTWARE

Paul K. Davis and H. Edward Hall

December 1988

A Briefing Note from the RAND Strategy Assessment Center




KEY FIGURES IN SYSTEM SOFTWARE

Project Leader: Edward Hall

System Software Design: Edward Hall, Norman Shapiro, Arthur
Bullock

RAND-ABEL language: Norman Shapiro, Edward Hall, Mark
LaCasse, Robert Weissler

Systems Programming: Edward Hall, Arthur Bullock

Interfaces: Jean LaCasse, Robert Weissler, Barry Wilson, Mark
LaCasse, Mark Hoyer, Sharyne Blixt, David Frelinger, Stuart
Glennan

Graphics: Larry Painter, Mark LaCasse, Robert Worley
Control Programs: Christe McMenomy

Management: Paul Davis, Herbert Shukiar, Bruce Bennett, William
Schwabe




oy

——r—

-3-
KEY FIGURES IN SYSTEM SOFTWARE

The development of RSAS system software has been a multiyear effort and will con-
tinue for some time into the future because of the many opportunities to greatly improve man-
machine interfaces. One of the authors (Edward Hall) has led the system-software develop-
ment effort. In earlier years, Norman Shapiro played a seminal role in initial design and was
the principal designer of the RAND-ABEL language. Arthur Bullock developed the initial
structures used in the simulation-model part of the RSAS and has been a major contributor
to overall system-software development since then. As the chart indicates, there have been
many other contributors to this multipartite effort. Herbert Shukiar, Bruce Bennett, and
William Schwabe should also be mentioned for their managerial influence on many aspects of
design and development. Herbert Shukiar was also kind enough to review the draft of this
briefing Note.
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TRANSLATING REQUIREMENTS INTO DESIGN

The briefing proceeds from “requirements” (mostly self-imposed) into design consid-
erations, choice of approach, and finally design details. For expositional reasons such as the
need to introduce terminology, we discuss language issues first. We then go into architecture
more generally and into the man-machine interface. Although we don’t discuss it here, dic-
tates of the project had important effects on programming style. In particular, we adopted
structured programming and decided to emphasize on-line documentation and intuitive inter-
faces wherever possible, in preference to producing masses of traditional hard-copy docu-
mentation that would probably seldom be read.




CONTENTS

- “Requirements’” and other objectives

« Programming language(s)

- System-software architecture
— Entities and structures
— Data flow
— Control flow

- The man-machine environment
« Current status of RSAS system software

« References
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CONTENTS

Let us begin, then, with a discussion of “requirements” for the design of system soft-
ware.

n




CONSIDERATIONS IN SYSTEM SOFTWARE DESIGN
REQUIREMENTS FROM MODEL ARCHITECTURE
» Structure of a military and political war game

- Hierarchical agents/players as natural objects of game

» Two distinct types of decision modeling:
— National command models with strategic world view
— Analytic war plans as adaptive building-block scripts

- Scheduled and unscheduled action triggers
- Lookaheads with imperfect information (e.g., Red’s Blue)

» Variable-resolution time steps

- Extreme flexibility: human/agent substitution, closed and
interactive operations, analytic and gaming modes,
changing of parameters, rules, and algorithms; alternative
levels of play affecting perspective and resolution

« Reproducible and understandable resuits
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CONSIDERATIONS IN SYSTEM SOFTWARE DESIGN

Our system software requirements were largely established by early 1983 (Davis
and Winnefeld, 1983), even though many important modeling ideas emerged later (e.g., see
Davis, 1985). The aspects of modeling approach that were especially significant in determin-
ing software requirements were: (1) the very concept of the automated war game (due pri-
marily to Carl Builder and William Jones; see Graubard and Builder, 1980); (2) the need for
hierarchies of agents; and (3) the need to accommodate two different styles of agent deci-
sionmaking: a strategic style of decisionmaking in which the top-level (political) model
should to some extent look at all variables and be able to make radical changes of strategy if
necessary, and a more cybernetic style by which the subordinate (military-level) models
would be adapting on the margin within the confines of a plan established at a higher level.

The notion of conceiving of military-level decisions as being adaptive only within the
confines of an analytic war plan akin to the scripts of artificial intelligence was especially
important—in part because of the conceptual paradigm involved, but also because it demand-
ed a radically different approach to the programming itself, as we shall discuss shortly.

Other key requirements included: the need for agents’ actions to occur at scheduled
times or when certain conditions arose, the use of lookaheads (a game within a game, con-
ducted to help an agent make a decision), and variable-resolution time steps.

An important aspect of the requirements was the emphasis on transparency and ease
of use. It is worth mentioning that many observers over the years have seen relatively litde
value in some of this, because they seek a black-box model amounting to an “answer
machine.” However, we took the viewpoint that assumptions and their interrelationships
drive conclusions, and it is therefore desirable that analysts and senior officials be able to get
definitive explanations and have the opportunity to change such assumptions readily. More-
over, from early on we envisioned a system that would be used by the analyst himself in the
course of his exploration and creative thinking, and not merely as a production device. Our
image, then, emphasized interactiveness, flexibility, and as much user-friendliness as we
could manage.
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? AUTOMATED WARGAMING WITH THE RSAS
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Control Agent

2

- Other RAND-ABEL Agents

CONTROL AGENT

status orders,
parameters
parameters,
world-state data,
overrides
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AUTOMATED WARGAMING WITH THE RSAS

Elaborating on the concept of automated wargaming, this chart and the next two illus-
trate certain key features of model architecture as described elsewhere (e.g., Davis, 1985). It
is important to distinguish between the conceptual model and the implementing computer pro-

grams. In principle it is possible to implement a given model in many different ways. Which
way one adopts affects performance, transparency, maintainability, flexibility, and a multitude
of other factors. Here we see the top-level view of the RSAS with its five basic agents, of
which Force Agent (CAMPAIGN) is special by virtue of being responsible for simulating the
physical world—i.e., for modeling how the physical world changes over time. These changes
are in response to decisions and directives issued by the other agents, which are decision
models rather than simulations (although in some fields of study “simulation” has a more
general meaning that may include nontime-dependent modeling, or even the acting out by
humans of possible discussions, arguments, and decision processes).

The Force Agent receives orders and produces information on the world state. It is in
itself a complex and sophisticated complex of models (see Bennett, Jones, Bullock, and
Davis, 1988), but will be treated in this Note as a black box. That is, we are mostly con-
cerned here only with how Force Agent fits into the overall system—aithough we make
some observations from time to time about programming methods used for the Force Agent.

Note that the political models must communicate (i.e., nations send messages to
each other during crisis and war—asking for cooperation, offering termination conditions, and
so on). Moreover, as shown on the chart GENERIC STRUCTURE OF RED AND BLUE
AGENTS (which follows the next chart), the conceptual model requires, consistent with the
real world, that there be a hierarchical command-control structure within the Red and Blue
Agents, and that there be messages up and down the command line. These are distinct from
the “orders” that the various models representing political- or military-level commands
would issue to the military forces, which would result in physical activities (e.g. alerting,
deploying, and dispersing armies or air forces). The simulation model (Force Agent) cares
only about the orders, except that the simulation is parameterized in many dimensions and
the Control Agent (defined as the automated agent serving for the analyst) may change
those parameters from time to time.!

1As a side note, an agent conducting a lookahead may also change those parameters, and parameters
affecting other agents, so that the lookahead is based on the agent’s perceptions of the world rather than
reality.
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TIME ADVANCES IN THE RSAS

This chart illustrates how time is handled within the RSAS. Since the Force Agent is
responsible for simulating the development of the world state over time, it is natural to make
it responsible as well for controlling the simulation clock. Thus, simulated time advances only
when Force Agent dictates such advances. By contrast, while the Red, Blue, Green, and
Control Agents (or human players) are deliberating, simulated time is frozen. The decision
models are responsible for specifying not only the decisions, but also any delay times that
might affect those decisions. In some cases a decision model “holds its decision” for a while;
in other cases (“flag model” cases) it sends the order at once but specifies when the action
is to occur. From the viewpoint of software the decision models are entirely event-driven,
whereas Force Agent is concerned with both events and continuous processes. Time
advances are variable depending upon the situation (e.g., typically four hours for conventional
combat but only minutes during a nuclear attack).

If the decision models are to be event-driven, they must specify the conditions under
which they will act. That is, they must specify what we call wakeup rules, since each agent
can be imagined to be sieeping until an event for which it wishes to take action occurs. Wake-
up rules can specify conditions based on time as well as on changes in the world state; for
example, when the Red Agent is fighting a war it may specify a deadline at which time it will
re-evaluate its strategy if it has not made a sufficient degree of progress. Many delays are
also implemented by the decision models having wakeup rules triggered at the time orders
are to take effect. Agents are able to specify multiple wakeup rules; in the preceding exam-
ple, Red also may specify a wakeup rule triggered by Blue nuclear use.

It should now be clear why this briefing does not emphasize control-flow within the
simulation—it is highly dependent upon the progress of the simulation itself. However, we
will return to the matter of wakeup rules and control flow later in the briefing.

l . "
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GENERIC STRUCTURE OF RED AND BLUE AGENTS
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GENERIC STRUCTURE OF RED AND BLUE AGENTS

h This chart elaborates on the hierarchical concept. Both Red and Blue have a national- )
command-level (NCL) model that decides objectives and strategy (Davis, Bankes, and

Kahan, 1986), and several levels »f military-command models, developed principally by col-

leagues William Schwabe and Barry Wilson. There may be no or many supertheater com-

mands, and each supertheater command may oversee many area commands. As an example,
Blue’s Global Command Level consists of the “JCS Model”, which represents the role of the
Joint Chiefs of Staff and certain functions of State and the National Security Council. Blue
also has a supertheater command called EUR, which corresponds approximately to the real-
world Supreme Allied Commander, Europe (SACEUR). Red has no supertheater command
level currently, because the real-world Red apparently has none (i.e., theater commanders
report directly to the national-level military command). There are subordinate Area Com-
mand Level (ACL) commands for Northern, Central, and Southern Europe. The military-level
models have the character of adaptive plans, which we call analytic war plans to distinguish
them from real-world operations plans, which seldom specify how to adapt to more than a
very few contingencies.

Commands can communicate both up and down the line of authority. For example, an
area command called AFCENT can send information to and make requests of the super-
theater command EUR, which in turn looks upward to JCS, and so on. Orders, by contrast, go
down the line. The de facto skipping of echelons can be represented by having intermediate
levels pass messages along with no change or delay.
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CONSIDERATIONS IN SYSTEM SOFTWARE DESIGN (CONTD)
OTHER NEEDS AND DESIRES

« Globally integrated Force data base

« Fast run time (half day for full 30-day global simulation)
- Ease of use

- Eventual distributed operations

- Portability

« Reliability

* Maintainability
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SYSTEM SOFTWARE DESIGN CONSIDERATIONS (CONT’D)

Here we complete the summary of the major considerations that served as generic

requirements. Touching upon the items briefly:

The RSAS was to be an integrated global model of crisis and conflict. It should be
straightforward, for example, to have “strategic nuclear assets” such as KC-135
tankers used in conventional conflicts and then pulled back for their primary strate-
gic nuclear missions, but users should not be able to double count them. Similarly,
users should have to make choices about where and when to use the 82nd Air-
borne or strategic airlift. Also, if one set of actions implies bombing of certain
installations, then the damage of that bombing should be accounted for when com-
paring other actions later on—even if the actions are in different compartments
(e.g., conventional vs. tactical nuclear strategic nuclear targeting, or the targeting
of military vs. C’I installations).

We elaborate on this because it had a profound effect on design. Ordinarily, one
tries to modularize problems so that different workers can proceed without step-
ping on each other’s toes or worrying about the details of other workers’ tasks.

For the RSAS, however, it was essential that the forces be realistically inter-
twined, which required a large and complex centralized data base, designed by col-
league Arthur Bullock. We expected that managing such complexity would be diffi-
cult, and it has been. This is a major reason for our decision not to distribute

source code for the simulation part of the RSAS, although users are welcome to
review it at RAND and suggest changes that would be helpful to them.

We sought fast run times, but were not able to estimate well what would be pos-
sible. On the one hand, we wanted narrow calculations and decision modeling to
be very fast—within a user’s cognitive cycle measured in seconds or tens of sec-
onds. On the other hand, for a full-up global simulation we thought anything up to
about half a day in duration would be both tolerable and a major achievement.
Even though our numbers were soft, they implied the requirement for a new lan-
guage that would be used for the decision models.

It seemed that the nature of man-machine interfaces was changing, and that the
RSAS should be designed so that analysts and wargamers could use the RSAS
themselves with only moderate assistance from professional programmers. Sim-
plifying the use of the RSAS has been exceptionally challenging because of the
inherent size and complexity of the problems being treated.

Although it seemed visionary in the early 1980s, it was clear to some of the sys-
tem architects that the time would come when people would want to have the dif-
ferent agents or teams operating on different computers. This might arise for func-
tional reasons or because of the desire to exploit the emerging technologies of
local-area networks and small, inexpensive but powerful computers.
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» Portability was considered essential because the RSAS was to be transferred to
government agencies with varying hardware and software configurations. It was
recognized, however, that “portability” should be defined in functional terms: the
man-hours and capital expense to transfer the system from one installation to
another.

¢ Reliability and maintainability, which often get short shrift, were fundamental
issues because of the probable complexity of the RSAS. Concern for these mat-
ters dictated adherence (albeit sometimes imperfect) to modern computer science
techniques often considered a bother by application modelers. The basic issue
here is that difficulties increase geometrically with complexity and control tech-
niques become critical, not optional, for large systems such as the RSAS.

These, then, represented the requirements around which the RSAS was to be
designed and built. They were mostly self-generated and informal, but were for the most part
reviewed and approved by a DoD Steering Group.

Probably the most important single difference between the RSAS and the dimly envi-
sioned RSAS of the requirements period in the early 1980s has to do with the microcomputer
workstations. Rather far along in the development process (1985), RAND decided to begin
making the move to Sun workstations and away from systems such as a VAX™-11/780
minicomputer coupled with a text monitor and a separate graphics monitor. For some time
RAND maintained the option for operations on such systems, and for some time there were
severe criticisms of our move toward workstations, largely because many prospective RSAS
users were just beginning to receive long-awaited and expensive VAX minicomputers,
which they now hoped to use for the RSAS. By now, however, the jury is in: users love the
workstation environment and their managers have finally recognized that the cost of work-
stations (and hardware more generally) is now low enough so that it is wise to pay the bills
and get the hardware that makes efficient man-machine operations possible. The result has
been that the first operational version of the RSAS exploited a technology that was still very
new. We believe that delaying the transition to that technology would have ultimately cost
the government a great deal of money and dramatically reduced the acceptance of the RSAS,
despite the virtue of RSAS models.
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Let us now tumn to the issue of programming languages, because understanding this
aspect of the RSAS is crucial to all that follows.




-22-

APPROACH TO PROGRAMMING LANGUAGES

+ Combination: C and new RAND-ABEL translating into C

— C for computationally intensive, globally integrated
force processes, exploiting pointers and structures

— RAND-ABEL for clarity, flexibility, rapid prototyping,
and analyst accessibility

— RAND-ABEL for analytical knowledge-based modeling
in complex systems, including many algorithmic

modules
IN C LANGUAGE IN RAND-ABEL LANGUAGE
Force-C Models (CAMPER) Higher-level decision models
Global bookkeeping Superpowers (Red, Blue)
Strategic mobility Third countries (Green)
“Main” theaters (Center
Region, Korea) Control Agent
Most naval operations Force-A (e.g., Referee)
Most strategic nuclear “Secondary” theaters
Most space (e.g., Iran, Norway)

Some other force models
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APPROACH TO PROGRAMMING LANGUAGES

It soon became evident that we would need two different programming languages. To
achieve a fast global simulation model of conflict it would be necessary to use a highly effi-
cient general-purpose programming language such as C, but if the knowledge-based models
were to be flexible and accessible to analysts something special would have to be developed
for them. That something has turned out to be RAND-ABEL (sometimes loosely referred to
as “Abel™), a versatile language described elsewhere (Shapiro et al., 1985, and Shapiro et
al., 1988).

The decision to use the C language and UNIX environment was based upon several
considerations (see also Shapiro et al., 1985). In particular, C/UNIX assured portability, a
good development environment in terms of power and flexibility, and specialized tools such
as YACC and LEX for building a high-level language for the decision models. Another impor-
tant factor was that C/UNIX was already familiar to a number of RAND’s computer scien-
tists. ADA™ was briefly considered but rejected on various grounds.

At the anecdotal level, it may be worth noting that some of our application program-
mers who previously worked in FORTRAN are of the opinion that the Force model could not
have been built without something as powerful as the C language with its pointers and struc-
tures, and the various UNIX programming utilities. In any case, RAND’s experience with the
C/UNIX environment has been generally favorable. Long-term maintainability and trans-
parency to new programmers are yet to be assessed, however. Better programming environ-
ments are assuredly needed to cope with such matters in complex systerns.

1ADA was just becoming available at this time, 1983, and not on a hardware/software platform that
RAND was likely to support or that the project could have afforded on its own. Two other factors entered as
well: lack of in-house experience with ADA would have meant an extended delay in development, and ADA’s
capability for man-machine interface appeared weak to us. Thus it was considered a bad choice. Today we
would consider ADA a reasonable choice for the Force simulation and a viable (but not as facile) alternative
for the decision models, but since current ADA environments don’t yet interface well to windowing systems
there would stiil be problems with the man-machine interface.
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RSAS COMPOSITION BY PROGRAMMING LANGUAGE
(NOT SCALED BY SIZE OF PROGRAMS)

FORCE-A
(S-LAND’S REFEREE, OTHERS)

o

DECISION MODELS
(RED, BLUE, GREEN)

CONTROL AGENT

C

RAND-ABEL — [ O7Ce Agent

(CAMPAIGN)
RAND-ABEL within
%/// C program (C-ABEL)
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RSAS COMPOSITION BY PROGRAMMING LANGUAGE

All serious users of the RSAS must understand how the RSAS is bifurcated into
parts written in the C and RAND-ABEL languages. There are two different data bases and
two sets of interfaces. When a user is ready to set parameters or look at outcomes he needs
to know how to do so, and this will depend upon whether the particular model of concern was
written in C or RAND-ABEL. Although the distinction was once simple—that Force models
were written in C and decision models in RAND-ABEL—that is no longer the case as the
previous chart indicates. Indeed, all the force models for secondary theaters (those other
than Central Europe and Korea) are written in RAND-ABEL using the S-Land modeling
methodology (Allen and Wilson, 1987), recently renamed the CAMPAIGN-ALT methodolo-
gy. The models in question are referred to as “Referee” in other documentation.

This chart shows more generally the composition of the RSAS by language. In much
of what follows it will be useful to refer to Force-A vs. Force-C (the letters, of course, being
for “ABEL” and “C”, respectively, although Force-C also includes related data bases and
software tools). Some subroutines of C programs are written in a special version of RAND-
ABEL we refer to informally as “C-ABEL.” Having the capability to write such subroutines
makes it possible to pull out of the C code the rules and algorithms of most interest to the
analyst and express them in RAND-ABEL, which is much easier to review and change.

Note, however, that these subroutines use the data of the C side of the RSAS, not that of the
RAND-ABEL side. Moreover, many of the RAND-ABEL-environment tools we shall
describe later (e.g., the Data Editor and Interpreter) cannot be used on C-ABEL functions.

The reasons for the bifurcation in language were compelling, but many of the current
difficulties in using the RSAS stem from this division, coupled with the fact that development
occurred on two different coasts with different people and different technical backgrounds. In
an ideal world the developments might have been more tightly coordinated, but in a world in
which much was being attempted for the first time there was a premium on encouraging cre-
ativity and trying alternative solutions to overlapping problems. Now that the RSAS has sta-
bilized we are evolving toward increasingly integrated software and a system in which the
user will be only modestly aware of issues such as language compatibility. We expect other
workers to have similar problems applying knowledge-based techniques to complex prob-
lems, so our experiences may prove instructive.
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RSAS COMPOSITION BY SEPARATELY
COMPILED PROGRAMS
(NOT SCALED BY SIZE OF PROGRAMS)
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It is sometimes necessary to understand how the RSAS is broken down into separate
programs, although modelers and analysts should ordinarily not be concerned with such mat-
ters. Force-C’s models are in one large program, CAMPER (the dark grey box on the chart).
The various programs representing models written in RAND-ABEL are actually combined
into a single large program named, for historical reasons, RUN.SUN (diagonally shaded box).
In addition, there are numerous separately compiled utility programs making up the various
interface tools. These are shown by the clear boxes, and each will be discussed later in this
briefing. The diagram loosely groups them under CAMPER or RUN.SUN depending upon
which they have the closest association with—however, this should not be taken to imply an

exclusive association.

Some RSAC publications use the terms RSAS-C and RSAS-A to stand for
CAMPER and RUN.SUN, respectively.! Note that they do not together constitute the entire
RSAS. Another source of ambiguity is what “The R3AS” means in terms of programs. Obvi-
ously, some of the software that comes with the Sun workstation (represented by the cross-
hatched box) is required to run the RSAS; however, there will be no further mention of this
software here.

The RAND-ABEL Compiler and the Input Processor (shown in light grey) are both
unusual in that they both are essential to the RSAS but are never used during an actual
run—only during preparation. The former translates the RAND-ABEL language into the C
programming language (instead of the usual assembler language to enhance RAND-ABEL'’s
portability) and creates the initial RAND-ABEL data base. The latter compiles the Force
data base.

! The diversity of terms used for RSAS components is confusing, and will persist until older terms
go away. The appendix summarizes equivalences.
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h Let us now begin the discussion of system architecture. To do this we shall first iden-
§ tify the main entities in software terms, and then move on to issues of data flow and control
flow.




RSAS SOFTWARE ENTITIES AND STRUCTURES

Principal Entities

- Agents

— Force Agent to control clock and simulate physical
processes (and low-level decision processes)

— Red, Blue, and Green (and Control, representing
analyst)

- Data Bases (WSDS-C and WSDS-A)

Background Entities

- System Monitor as Main Program

» Tools for assessment, analysis, and modeling/programming
- Agent-to-agent communication software

- Language-related software

« Utilities
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RSAS SOFTWARE ENTITIES AND STRUCTURES

This chart distinguishes the types of entities and structures found within the RSAS.
Most of the discussion will focus on the agents, data bases, and tools. There are a few items
here that we should define, even though they will be discussed more later:

The WSDS-A and WSDS-C are the RAND-ABEL and C data bases, where WSDS
stands for World Situation Data Set.!

System Monitor is the top-level system-software entity, the chief function of which is

to control the sequence of the agents’ execution.

1As previously mentioned, the distinction between the RAND-ABEL and C worlds is blurred,
although an essential difference is which WSDS a given routine utilizes. Since they exist within two disparate
pieces of software, no routine has direct access to both WSDSs.
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MAJOR FEATURES OF SOFTWARE APPROACH

« Hierarchical coprocesses represent natural hierarchical
objects of conceptual model

- Agents communicate through centralized World Situation
Data Set (WSDS-A)

— modularity plus efficient development of complex
system

— different “message-passing mechanism” than function
calls of object-oriented programming languages

— WSDS-A like a common blackboard, but with coded
messages and a Data Dictionary for discipline and
access control

- Special capabilities for WSDS saving and branching,
lookaheads via “pushes” and “pops,” Delta WSDSs, and
extreme flexibility of user modes
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One of the most important software decisions was to use hierarchical coprocesses to
represent the various agents. The coprocess issue is discussed more fully in the next chart.

A second important decision was to have all RAND-ABEL agents communicate
through a centralized data base (the RAND-ABEL World Situation Data Set or WSDS-A).
Metaphorically, these agents communicate by leaving messages on a common blackboard.
However, a crucial part of the metaphor in this case is that the messages are coded so that
they can be read by only the intended recipients. This is implemented through the RAND-
ABEL language and its associated Data Dictionary, which include the concept of data
“ownership.” If one agent “owns” a certain variable, the value of that variable cannot be
read “directly” by another agent.

There are instances in which it is expedient to violate modularity to make something
work that is due tomorrow, or to experiment with some new concept before revising the
underlying design of the model. In the RSAS we allow one agent to access the variables of
another within the RAND-ABEL part of the system by providing a special syntax. For
example, a Red Agent rule could include: “If Blue’s <variable name> is <variable value>
Then ...” Thus, Red would be reading Blue’s internal variables. The code used for the mes-
sage writing, then, is deliberately easy to break. After an exercise requiring such an expedi-
ent of module-breaking, it is easy to find and eliminate these violations of standard practice.

A third important decision made early on was to provide the capability for branching
and lookaheads. In “branching” one may run a game to a certain point, save a world state
(both WSDS-C and WSDS-A), continue the game, and then go back and run an excursion
from the saved state. A “lookahead” is a special case of this in which an agent or human
player: saves the world state (WSDS) (only part of which it knows correctly); creates one or
more sets of assumptions about the opponent model, its own decisions, and other matters;
runs the RSAS ahead to evaluate likely consequences; and then returns to the “real game”
and makes its decisions using the lookahead simulation as a source of knowledge.

The mechanism used for implementing these concepts involves “pushes” and
“pops,” to use the software jargon. The metaphor here is to stack mechanisms such as that
used for cafeteria trays. One creates a new world state (adds a new tray) to the top of the
stack by pushing down the others. When one erases the new world state from memory after
a lookahead (removes the top tray), the old one pops back up and is on top again. This can
be repeated, in principle, through many levels, although we do not in fact do so because of
memory constraints and conceptual complexity.
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COPROCESSES

Coprocesses: are created, stop processing to “sleep,”
then “awake” later to begin where they left off

Changing object hierarchies (coprocess structure) during
simulation is easy, allowing variable structure simulation

Convenient for script-like programs representing plans
Convenient for treating hierarchies of independent entities
System Monitor is Main Program, charged with control

Suitable for distributed processing; Force-C models are in
a separate UNIX process
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COPROCESSES

Coprocesses, an elaboration of coroutines (Knuth, 1973), are unlike ordinary func-
tions. When a given coprocess gains control, it begins execution not from the top, but from
where it left off previously. Coprocesses can, during a simulation, create (or destroy) other
coprocesses, and generally execute for a period, stop processing to “sleep” while other
coprocesses operate, and then wake up and proceed from where they left off. Because they
can be created or destroyed readily during a simulation, they permit variable-structure simu-
lation, which is still unusual, although there are many examples in the physical world for
which this would be appropriate (Zeigler, 1986).

The implementziion for the RSAS of coprocesses in UNIX (accomplished by Hall in
1984) was probably the first UNIX implementation of what we call coprocesses (coroutines
had been done earlier), although subsequently other workers have independently implement-
ed similar software under various other names such as “lightweight processes.” The treat-
ment in the RSAS, however, is probably still unique with respect to dynamic hierarchies and
wakeup conditions.

The coprocess approach was originally motivated by the opportunity it provided to
represent military plans as script-like programs as suggested in early design work (Steeb
and Gillogly, 1982). For example, a theater commander may order his forces alerted in one
phase of operations, deployed in another, and sent into combat in yet another. In between,
there are “sleep periods” for the decision models, although the simulation continues.

The coprocesses also provide an excellent mechanism for modularity. Each model
entity (e.g., a given Red theater commander) has attributes and simulates processes affect-
ing those attributes largely or completely independently of those belonging to other model
entities. For example, Red’s image of Blue’s world and Red’s decision processes in relation
to Blue at the national command level do not depend directly on Blue’s perceptions, or even
directly on the perceptions of lower-level Red commanders. They can, of course, depend on
information provided by messages from those other entities. For both substantive and soft-
ware reasons, then, such modularity is very useful.

System Monitor is the “Main Program” (in the sense of C-language programs), and
controls the order in which the other coprocesses execute—much as in operating systems.
Each coprocess has its own wakeup rules, which Monitor tests routinely. The Force Agent
is special in that it gains control whenever none of the other agents wish to awake.

Finally, let us mention that coprocesses provide an avenue toward distributed pro-
cessing. As one step toward this, we have made the program containing the Force-C models
into a separate UNIX process so that it can be run on a separate computer as part of a net-
work (in a sense, then, the Force-C models are not a coprocess with the others, at least not - %
in the usual sense). In the future, it may be possible to have Red, Blue, and Green running on
separate machines with separate user interfaces, although not concurrently.




ILLUSTRATIVE “FAMILY TREE” OF RSAS COPROCESSES

System Monitor

Force-le;mdels
(CAMPER)

Force-A Control Green Blue Red
/\ NCL NCL
Blue, Red, Green, « ”
and Force control Order GCL
plans % %\
SCL SCL ACL ACL ACL ACL
Hllustrative only.
(Blue and Red may have arbitrary
number of SCL and ACL

coprocesses; Force-A, etc., may
have child coprocesses.)

------------ The Force-C models (CAMPER) and System
Monitor are both UNIX processes and can run
on separate machines.
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ILLUSTRATIVE FAMILY TREE OF RSAS COPROCESSES

The coprocess structure of the RSAS is illustrated by this chart, although it is simpli-
fied because of the bushiness of Red and Blue command-control structures. Remember that
each of the entities shown can have its own wakeup rules.

Although System Monitor is the main program controlling all of the others, both it and
the Force-C models (also called CAMPER) are UNIX processes capable of running indepen-
dently. Within RAND, CAMPER and the decision models are usually run on one Sun work-
station while the rest of the RSAS (i.c., the interface tools) is run on another. This first step
toward distributed processing proved efficient and informative. In the future, distributed pro-
cessing will become more common and, for example, the Red Agent may operate on a differ-
ent workstation than the Blue Agent.

There are some entities noted here that we shall discuss later in more detail. These
are special coprocesses subordinate to the Control Agent, all of which give the analyst con-
venient ways to schedule interventions without having to watch the game in detail, stop it,
and make changes interactively.




AN ASIDE: TIES TO OBJECT-ORIENTED

PROGRAMMING

Features of standard object-oriented programming
languages (OOP) (e.g. SMALLTALK, ROSS, ...):

Data hiding
Inheritance
Message-passing

Problems with current OOP languages:

Not suitable when objects interact too much (e.g.,
continuously) or too intricately

Clumsy in treating interactions with “fields”
Based on single-paradigm approaches

RSAS features:

Object-oriented modeling for agent architecture

Modularity (data hiding) through language features of
ownership

No built-in inheritance features

Object-to-object communications through a central
data base, not function calls
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AN ASIDE: TIES TO OBJECT-ORIENTED PROGRAMMING

We are often asked whether the RSAS uses object-oriented programming. The
answer is complicated because it is not entirely clear what object-oriented programming
(OOP) is, or at least what it will be in the future.

Historically, “object-oriented programming” has coften been used synonymously with
programming in certain specialized languages such as SMALLTALK-80 (Goldberg and Kay,
1976), ROSS (McArthur and Klahr, 1982), or the system discussed in Reddy (1987) and in
earlier work by Reddy and Fox. These typically have features called dara hiding, inheritance,
and message-passing. Each of these fcatures, in tum, is a particular way of addressing partic-
ular issues (i.e., modularity, the hierarchical relationships arnong variables and operations on
them, and the mechanism by which different software modules interaci with each other).
Roughly speaking, the idea is to build programs from entities conceptually like natural
objects and the relationships existing between them. These objects have attributes and pro-
cesses affecting those attributes (“methods”) that are known only to themselves. Objects
interact by sending messages to each other—similar to procedure calls in other languages—
and (in classic OOP) share data in no other way. There are various classes of objects, with
each instance (i.e. individual object) of a class having identical methods but data entirely pri-
vate to itself (a form of data hiding). Hierarchies of classes exist, with related classes shar-
ing methods but adding (or modifying) some of their own (such sharing is termed inheri-
tance).

Unfortunately, despite current enthusiasms for them, OOP methods are no panacea—
indeed, they are often highly inappropriate. The OOP methods work well for systems of dis-
crete entities that are relatively independent or have strictly defined interrelationships. Cur-
rent OOP methods are clumsy for systems of entities interacting continuously with the envi-
ronment (e.g., gravity or terrain) or with one another in complex ways. There are analogies
here to physics, in which it is well known that the appropriate representation of a system is
sometimes particle-oriented, field-oriented, or a hybrid. At the time the RSAS was designed
there were no well-developed high-level languages that would allow us to mix object-orient-
ed and “field-oriented” or procedure-oriented representations conveniently. Even those
newer languages that allow such mixtures of techniques generally do so at the expense of
one paradigm or the other, or as an ill-fitting hybrid.

Another problem with current OOP languages is that their implementation of inheri-
tance, motivated by the search-oriented inference techniques of artificial intelligence
research, are extremely inefficient by comparison with what can be accomplished with more
specific control structure and the use of pointers. Efficiency is a major issue for systems like
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the RSAS. Some newer languages—for example, C++—reach a more efficient compromise
but are ill-suited to the highly symbolic nature of political-military simulation.

With this background, then, how does the RSAS relate or not relate to OOP meth-
ods? It achieves what amounts to data-hiding modularity through the use of coprocesses and
the ownership features of the RAND-ABEL language. It does not have built-in inheritance
features, although it treats related issues through explicit programming; we have no plans to
incorporate the inefficient search-oriented inheritance features of classic OOP languages.
Agents do send messages among each other in the RSAS, but the message-passing mecha-
nism is implemented in a centralized data base using semaphores and protected data areas
(not the function-call mechanism of OOP languages).

The Force-C simulation would be regarded by some as a natural candidate for object-
oriented programming. The number of entities and interactions is so great, however, and the
role of continuous processes so prevalent, that a classic OOP approach would have proven
extremely inefficient and, probably, clumsy by comparison with the pointer-exploiting meth-
ods we actually employed. At the same time, the resulting Force-C source code (and to
some extent the code for supporting software) is very complex and will doubtless not be
easy to maintain. It would have been desirable to have had a variant of C with at least some
of the object-oriented features built in (primarily data-hiding). Although such variants of C
exist today, they were not available when we began and we have no direct experience with
them as yet.

In summary, the RSAS embodies many of the very complications that limit the useful-
ness of the original object-oriented programming languages. Nonetheless, it is funciionally
object-oriented in its top-level architecture and it incorporates what amounts to data hiding
and a loose form of “message-passing.” Although the RSAS source code deals with many
inheritance-related issues, it does not do so using inheritance features built into the lan-
guage itself. Although there may be some areas where an inheritance mechanism would have
aided the programming process, in many cases the complex interrelationships and exceptions
would have made such mechanisms extremely clumsy.
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ACTUAL DATA FLOW: VIA WSDS AND A DATA DICTIONARY

Returning to the main thrusts of the briefing, this chart anticipates the discussion of
data flow that follows by showing at a top level how the various entities are related in a data
flow diagram. It is important to observe the distinction between the software implementation
of data flow and the apparent data flow suggested by the earlier charts on the conceptual
model. In particular, where the conceptual model shows agents sending each other mes-
sages, this chart demonstrates that the messages do not go directly from one agent to anoth-
er, but rather into a centralized data base where certain other agents can read them. Also,
while we will often refer to “the WSDS,” this chart reminds us that there are two data
bases, the WSDS-A and the WSDS-C; “the WSDS” is an abstraction.

This chart also shows a WSDS-A “server,” which includes a Data Dictionary. This
is an imiportant software entity allowing interface software as well as the agents to access
WSDS-A data without requiring the agents to understand details of WSDS-A structures.
TLat is, interface software can merely refer to var:stle names without having to worry about
storage locations in memory, locations that could change as variables are added or subtract-
ed from the system. When an analyst introduces a RAND-ABEL variable, he must declare it
in the Data Dictionary, which includes information on the variable’s type, ownership (access
restrictions), and semantic meaning. There exists no comparable server for the C side of the
RSAS.

Finally, let us emphasize a terminological problem that continues to haunt RSAS
users. Most long-term RSAS developers and users refer to the Force-C models or
CAMPER as “Force,” because originally they were identical as mentioned earlier (i.e.,
there was no Force-A). This can create serious misunderstandings, however, when one is
discussing either interface issues or higher-level modeling issues. (See also the appendix.)
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DATA FLOW IN THE RSAS

One of the best ways to characterize the high-level structure of software is with data
flow diagrams, because these describe the way information flows without worrying about
aspects of control flow that are often arbitrary or implementation-specific. We shall now
examine a number of data flow diagrams to introduce and describe major interfaces.
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PRINCIPAL HUMAN INTERFACES FOR DATA
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PRINCIPAL HUMAN INTERFACES FOR DATA

This chart identifies the most important RSAS man-machine interfaces, of which
there are six that are especially important and conceptually different. We shall show some
others later, notably CONTROL PANEL (shown in outline), which merely provides a simple
top-level interface to System Monitor, GRAFFER (not shown here, even in outline), which
is an essential graphics interface for certain types of analysis but is being phased out as its
functions are taken over by more general graphics tools, and the RAND text-editing pro-
gram, “E,” used in manipulating source code, databases, display formats, etc., and in reading
log files.
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DATA FLOW AND INTERFACES IN RSAS (AGGREGATED)

Diagrams such as this can be extremely useful, but they can also be intimidating
when first viewed. The most important points to notice probably are these:

BN  FPRAREEISE ISR

« The C-language entities Force-C models (CAMPER), WSDS-C, and CMENT are
on the bottom; the RAND-ABEL entities are on the top (see also the next chart).

» There are communications between the two classes of entity, but this is complex
enough to merit showing explicitly a RAND-ABEL/Force-C Model Interface, a com-
plex piece of software developed by colleagues Robert Weissler and Barry Wilson.
Remember that at the level of software the RAND-ABEL and C programs live in two
different worlds, and can communicate only when special arrangements have been
made. This would be trivial if only a few variables were at issue, but it is not at all
trivial in a large and complex system exploiting pointers and functions, and being
worked upon by many people, both analysts and developers.!

» All the interface io00ls, with the exception of the logging tools, communicate using a
common “Tool Interchange Language,” or TIL. TIL is designed to be efficient and
robust (it depends on streams of ASCII data), but easy to debug by virtue of being
directly readable by the programmer. In fact, several system configuration files also
use the TIL syntax. This uniform approach has greatly aided our efforts. The TIL lan-
guage is described in on-line RSAS documentation under the Data Editor.

« The graphics and log interfaces currently are used strictly for output. They provide
information both during a game and afterward. The other interfaces are for input, or for
both input and output.

» The Data Editor and CMENT windows perform similar functions for the RAND-
ABEL and C worlds, respectively, providing for the interactive viewing and changing
of data. However, CMENT is really just a menu- and window-oriented front-end for
the existing command-line interface contained in Force-C, while the Data Editor
(plus the Interpreter) form the basic interface to the RAND-ABEL models.

* The Interpreter interface is different in kind because here the user is not merely
changing parameters of the models but the models themselves. That is, he may wish
to review and then change the underlying rules (or parameter values) in the middle of
an RSAS simulation.

1The basic interface emphasized minimizing the number of human interactions necessary to coordinate
changes in source code connecting the RAND-ABEL and C programs. Any model on the “RAND-ABEL side”
can obtain data from the “C side” by calling and parsing in a routinized way the data stream constituting the
human-readable data displays developed previously for users of the Force-C combat models. So long as the
data needed exists in such a display (and it usually does, because if it is important enough to be needed by a
RAND-ABEL model it is important enough to be in a human-readable display), obtaining the data can be
accomplished by a RAND-ABEL.-side programmer without consulting (and disrupting the work of) a C-side
programmer. When tighter coordination is possible a more efficient method can be used involving “dumps” of
unencoded data rather than displays. Versions after 3.5 will do most of their intercommunication in this way.

- A
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INTERACTING WITH THE RSAS DATA EDITOR

Let us now begin talking through the parts of the RSAS rather than trying to compre-
hend all the relationships simultaneously. This chart focuses on the principal man-machine
interface to the RAND-ABEL programs, the Data Editor. The Data Editor is a spreadsheet-
like interface in which one uses a mouse and menus to observe, select, and modify data (see
references by colleague Jean LaCasse). Current values of WSDS-A data are displayed in a
tabular form chosen from a large selection of layouts called “tableaus”; the values displayed
can be modified interactively by selecting from a list of possible values or, when appropriate,
by typing in a value. When cleverly designed, the tableaus can summarize all the parameters
relevant to a particular issue, and can include commentary to help the analyst make wise
choices and avoid common blunders.

The ability to create a great variety of data displays makes the Data Editor especially
valuable to analysts, since they can use a text editor and “tableau definition files” to create
tableaus displaying exactly the data needed for particular studies. Conventional interfaces
require a professional programmer for such tailoring, which is usually required since the origi-
nal programmers of an interface rarely anticipate all the needs of future users.

One matter with which the user must be concerned is whether changing a given vari-
able will actually have the desired effect on the simulation. If the models have been designed
appropriately, the user may choose to override certain model decisions and then “lock the
changes in.” Otherwise, the user might wind up setting values that the model itself would
likely override at some later point in the simulation. Thus. in using the Data Editor it is
important to understand which variables may actually be changed meaningfully.

The Data Editor can also be used to set variables in the Force-C models. Some
WSDS-A variables amount to instructions as to when Control Agent should send Force-C
specific orders.
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INTERACTING WITH FCRCE AGENT VIA CMENT
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INTERACTING WITH FORCE AGENT VIA CMENT

From a user’s viewpoint, the CMENT window is the primary interface with the C
side. Developed by colleague Mark Hoyer, CMENT includes nested menus and some inter-
active tableaus, which are similar in purpose to those of the Data Editor.!

Originally, the Force interface was a line-by-line command interface (e.g., the user
would type parameter-setting or order-sending commands such as “set landwar US intens
0.6” (a fictitious example), and then be queried for additional information one line at a time).
This interface with syntactically well-defined orders remains the comprehensive and defini-
tive interface, but the user of CMENT may either enter such orders or exploit the various
menus and tableaus. As the system matures, CMENT’s nested menus and interactive
tableaus are becoming increasingly important—not just because they reduce typing, but
because they provide a better sense for the models being used. CMENT displays and menus
can be changed by editing its configuration file, but must follow closely the framework defined
by Force-C’s underlying command-line interface.

1Optionally, users may employ the “F-Window,” which provides only the line-by-line command
interface without the CMENT-specific options allowing the uses of the mouse on nested menus. Since
CMENT uses a fairly large amount of memory, those users who prefer the bare command interface and who
do not need CMENT"s global displays often use F-Window instead.
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THE RAND-ABEL INTERPRETER INTERFACE
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THE RAND-ABEL INTERPRETER INTERFACE

Having discussed briefly the two principal interfaces with data, let us now discuss the
interpreter interface, which allows us to change RAND-ABEL source code during an RSAS
simulation—rather than quitting, recompiling, and starting over again. (This does not apply
to RAND-ABEL code within the Force-C models.)

RAND-ABEL is not interpretive in a line-by-line fashion as in, say, BASIC; in the
RSAS one must make changes to a complete function. The user copies the function of inter-
est to a special file in the INT directory and edits the function as desired. (This involves a
word-processing editor developed by RAND called “E”, which is not discussed in this Note
even though it is, in a sense, one of the system-software interfaces.) When execution of the
RSAS is continued, the revised function will be executed rather than the originally compiled
function. Further changes can be made by repeating this procedure.

As this chart illustrates, the human analyst can use the interpreter to make changes
“now” to Red, Blue, or Green Agents (or to the Force-A models); alternatively, he can use
interpreted functions within Control Agent to schedule changes in terms of time or conditions.
As a special case, Control Agent can be instructed to make the changes before the rest of
the simulation proceeds, setting new values in the WSDS-A or sending parameter values to
the Force-C models.




h CONTROL AGENT

TECHNICAL CHARACTER: Same as Red, Blue, or Green Agents

FUNCTIONS: to act for the user in doing things the user would
otherwise do interactively

EXAMPLES OF ACTIONS SCHEDULED IN CONTROL AGENT:

- Set system parameters (issue system commands) affecting
logs, displays, game duration, and choice of models

» Adjust model inputs by changing parameters
« Adjust model outputs

- Supplement model outputs (e.g., issue additional force
orders on behalf of Red, Blue, or Green)

- Supplement or change RAND-ABEL model functions (i.e.,
add rules, including algorithms)
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CONTROL AGENT

The next four charts form a group defining the function and character of the Control
Agent, which is technically similar to the Red, Blue, and Green Agents in being a coprocess
with its own wakeup rules and, if desired, phases, moves, and sleeps. The Control Agent
acts for the analyst, who otherwise might have to sit and watch the simulation proceed so he
could intervene at appropriate times to change parameters, override decisions, change rules,
or whatever. If the analyst can figure out what he wants to do in advance, he can schedule
those interventions through the good offices of the Control Agent. Some examples may be
useful:

1. Set system parameters such as log levels or the parameter specifying
which NCL model is to be employed (e.g., SamN vs. SamO).

2. Adjust model inputs (e.g., French temperament or kills per sortie by air-
craft).

Adjust model outputs (e.g., French cooperation).

4. Supplement model outputs (e.g., issue additional force orders on behalf of
Red, Blue, or Green—orders not specified in the basic models).

5. Change particular model functions (e.g., a particular rule or algorithm), per-
haps only temporarily or only for a particular run.

A confusing aspect of this is that analysts often want to change Red, Blue, Green,
and Force models on the margin without disrupting the complex structure of the agents as a
whole. If the analyst were doing this interactively, it would mean he would override certain
decisions, or perhaps change the rules in just one or two highly selected areas and only
under certain circumstances. By putting these interventions in Control Agent the analyst s,
in a sense, dividing the content of the decision models (e.g., in a given simulation part of the
Red Agent will be “in Red”—i.e., in Red Agent files—while a part will be “in Control
Agent”), but this is precisely what he often wants to do in order to keep all his assumptions
in one place. Thus the instructions in Control Agent are essentially exceptions to the basic
defaults.
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CONTROL AGENT MODES
SCENARIO GENERATOR (User-Generated or Scripted Mode)

- User schedules interventions with Data Editor, selecting
from menus

« Control Agent passes instructions to relevant agents at
appropriate times

CONTROL-PLAN FUNCTIONS (for Red, Blue, Green, and Force)

« User schedules interventions in RAND-ABEL plan,
analogous to analytic war plans with sleeps, moves,
wakeups, etc.

« Control Plan could be compiled, but is usually interpreted

- Maximizes flexibility and collects interventions in one

place, but requires some ability to read and change RAND-
ABEL

» Can substitute for or supplement Scenario-Generator
inputs

ORDER FUNCTION
» User inserts instructions in special function and interprets

» User selects “Order” on H-Tool display

 Instructions are executed immediately, and only once
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CONTROL AGENT MODES

There are three modes for using Control Agent: the Scenario Generator, Control
Plans, and Order Functions. The first involves filling out Data Editor spreadsheets to sched-
ule interventions. This Scenario Generator method developed by Robert Weissler is simple
and convenient, and does not require knowing variable names or values. However, it limits
flexibility and may prove less convenient for analysis than the second approach. We will
show more detail on this later.

The Control Plan approach is one in which the user writes a simple RAND-ABEL
plan scheduling the interventions he wants Control Agent to make. Usually he will do this by
copying one or more functions from an existing plan (e.g., the function for deployment of
forces to a particular theater) and changing it on the margin to represent his own assump-
tions. With programmer assistance (at least the first time through) this can be very straight-
forward and efficient.

Sometimes the user will need to be sure that his instructions are executed precisely
at a given time or when a given condition is satisfied. This may not be a simple matter
because the instructions are parts of functions that ordinarily would not be executed until the
appropriate agent wakes up and decides to execute those functions as part of its (possibly
complex) basic control structure. To assure immediate execution (e.g. “I want to deploy
those forces now, which I forgot to allow for when I developed the original analytic war
plan”) there is a special “order function” developed by Barry Wilson and William Schwabe.

All of these options are documented on-line in the INT directory of the RSAS.

Wi o
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COMPONENTS OF AN ANALYST-PLAN FILE

Analyst-Plan File

- e

Owner: Red.

<various statements>
End.

Define <Red-function-name>:

<various statements>
End.

Owner: Red.

Define Control-plan:
<various statements>

End.

Owner: Blue.

Define Control-plan:
<various statements>

End.

Define <Blue-function-name>:

Change in rules: executes as
part of Red coprocess

Change in rules: executes as
part of Blue coprocess

Analyst overriding or adding to
Red oulputs: executes as part
of Control coprocess

Analyst overriding or adding to
Blue outputs: executes as part
of Control coprocess

L
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COMPONENTS OF AN ANALYST-PLAN FILE

The concept of an analyst plan has not been described in previous RSAS documenta-
tion, but is proving very important in practical day-to-day work. An analyst wants to tightly
control the variables affecting the simulation. In particular, analysts often want to state all
their assumptions “in one place” where they can be viewed at a glance. In practice these
assumptions represent changes from some baseline; in the RSAS this corresponds to having
a baseline consisting of Red, Blue, Green, and Force Agents with the analyst’s assumptions
consisting of selective changes in rules or parameter values. The analyst-plan file contains
RAND-ABEL code specifying these changes.

This chart shows an analyst-plan file schematically. A more general depiction would
include segments for Green and Force Agent changes. Note that in this example the analyst-
plan file includes changes to the Red and Blue Agent models (i.e., rule changes) that apply
immediately once the game begins. It also includes two control plans of the type discussed in
earlier charts. These schedule additional changes that can be made by adjusting Red or Blue
parameters during the game.
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DATA FLOW FOR THE SCENARIO GENERATOR MECHANISM

As suggested earlier there are several ways to use Control Agent. The analyst-plan
file is especially convenient, but requires working with computer code—although it is RAND-
ABEL, which is easier to work with than most computer languages. An alternative is to use

the Scenario Generator mechanism depicted in this chart. With this, the user merely fills out
a spreadsheet using a mouse and menus. Underlying software then translates this into the
same type of instructions that could have been introduced directly by writing some RAND-
ABEL code as described in the preceding charts.

The Scenario Generator mechanism is especially convenient for demonstrations, for
getting users acquainted with the system at an elementary level (having to change computer
code can be intimidating), and for preparing a variety of baseline world states. It is less con-
venient for entering the changes between one excursion and another because the variables
may appear in a large number of different Data Editor tableaus. It is possible to design one’s
own single-page tableau tailored to a particular study, but someone who has achieved
enough competence to do that will probably feel more comfortable working with analyst-plan
files instead because, in our experience at least, they will be eager to go through numerous
cases and will be impatient with the easy-to-use but time-consuming mouse-and-menu
approach. It is generally faster to type the instructions into a file.

The most important point to make here is that the Scenario Generator mechanism is
relatively user-friendly, but the options it provides are only those that have been anticipated.
In working with the RSAS users frequently want to make changes that are easy to do in
RAND-ABEL but that cannot be made using existing Scenario-Generator tableaus.
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DETAILS OF HUMAN INPUTS TO FORCE AGENT
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DETAILS OF HUMAN INPUTS TO FORCE AGENT

This and the next three charts describe paths by which a user may specify inputs to
the Force Agent models. We shall not discuss them in detail here, but they may prove useful
as reference—e.g., in clarifying how and why different users are going through such different
operations to do “the same thing,” and in suggesting when one wants to use one method
rather than another for making changes in the force model parameters. The numbers appear-
ing along the arrows are keyed to the third chart, NOTES ON FORCE AGENT INTER-
FACES. The first chart highlights certain paths appropriate to users doing sandtabling in
which the user is exploring—trying this and that but not worrying about tight control over the
variables or careful record keeping. Everyone must start with the sandtabling, because it is
by using the CMENT window and the Data Editor that one gets to understand the models
and variables, as well as to learn their precise names. Only when these things have been
learned can one go on to the analysis stage in which one wants very tight control and very
good and compact records. Here most analysts prefer to use analyst-plan and scenario-gen-
erator mechanisms almost exclusively.!

lwe should mention here that in some applications of the RSAS focused on the European Central
Region or strategic nuclear forces, analysts sometimes work exclusively with Force-C (CAMPER with its
associated database and tools). In these instances they construct something called “Use Files"—essentially
scripts of commands to the Force-C models—to define their various cases. They play the same role as Analyst
Plans but are much less flexible, since they do not contain conditional logic involving mode! variables or
exploit libraries of analytic war plans. Use Files developed in such work are often used to construct the first-
cut versions of analytic war plans after a study is concluded. Thereafter, adaptive logic can be added so that
the plans preserve the original thinking while adding flexibility.
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DETAILS OF HUMAN INPUTS TO FORCE AGENT

(ANALYST MODE)

(Already discussed)
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NOTES ON FORCE AGENT INTERFACES

PATH TYPE OF DATA

1

10

Rules, including
equations, in code

Rules, including
equations, in code

Parameters, state
variables, orders,
and system params.

Parameters, state
variables, orders,
and system params.

Parameters, state
variables, orders,
and system params.

System parameters
(e.g., log levels)

Orders, parameters

Orders, parameters,
and system commands

Orders, parameters,
and system commands

Orders, parameters,
and system commands

RECIPIENT

Force-A

Control plan (sup-
plementing Force-A)

WSDS-A (for
Force-A)

WSDS-A (for
Force-A)

WSDS-A (for
Force-A)

WSDS-A

WSDS-A, Force-A

WSDS-C, Force-C
models

WSDS-C, Force-C
models

WSDS-C, Force-C
models

VIA

Interpreter

interpreter, Control Pian

Interpreter, Control Plan

Data Editor

Data Editor and
(Scenario Generator)

Data Editor

CMENT

Interpreter, Contro! Plan

Data Editor, WSDS-A,
Control (Scenario Gen.)

CMENT
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NOTES ON FORCE AGENT INTERFACES

(Already discussed)
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GRAPHICS INTERFACE

Having discussed the various mechanisms for entering inputs, let us now look at out-
puts. This chart provides an overview of the graphics-output interface. It highlights the two
tools of most interest, Graph Tool (developed by Larry Painter) and Map Tool (developed by
Mark LaCasse). GRAFFER, shown here but not in previous charts, was a key element of
the original RSAS but is being supplanted by *hese two tools; it still appears only because
there remain a few graphics that still cannot be accessed by the newer tools. CMENT
appears because it has two specialized graphical outputs of interest—rotating-globe dis-
plays of CI status and naval presence. Users not interested in strategic-nuclear operations
can simplify their life (the RSAS is complex in part because it offers so many options) by
focusing strictly on Graph Tool and Map Tool.

K]
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DETAILS OF GRAPHICS INTERFACE
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DETAILS OF GRAPHICS INTERFACE

This chart introduces more details important to software specialists. The most signifi-
cant point here is that good software design involves input-output “tools” that can be used
in many different cortexts with no new programming. For example, it makes no difference to
the RSAS Graph Tool whether the data it receives come from model x or model y, or indeed
whether the data even come from an RSAS model in the first place. If it did make a difference,
it would mean that any time a model were changed or variables added the Tool would also
have to be changed, creating a severe maintenance problem.

The general approach, then, is to insulate RSAS tools from the details of the models
and data bases. Such specialized information is built into software entities such as the Appli-
cations Interface Program (AIP). The AIP can accept data from many different models, so
long as those models transmit the data in a specific format, and so long as the AIP knows
the names of the data elements.

To describe this in somewhat less abstract terms, consider for a moment a graph-
drawing tool that takes input and plots graphs on a simple x/y display. The tool should only
know that it is receiving pairs of data points; it should not care where the data come from or
how they are generated. By contrast, one can imagine a graphical output program embedded
within a complex model. This output program might have instructions causing it to take its
first x value from a temporary storage location representing the output of a function that has
just been called, or the current value of a pointer to a variable, and so on. Such a program
could produce the graphics but would be extremely specialized, with the embedded code like-
ly to obscure model operation as well.

Another example may be useful. Imagine a graphics program that knows that the first
x value is the 37th number in a particular file, the first y value is the 74th number, and so
forth. It “knows” this only because the file has been carefully formatted and the graphics tool
has been “hard-wired” for that format. If the model changes, the output file is likely to
change as well (e.g., the first x value may now be the 39th number) and the graphics program
will have to be reworked.

By contrast in the setup represented in this chart the user specifies by name the vari-
ables he wants to see plotted, and the AIP translates this request into a flow of data to the
Graph Tool. Although some specialized knowledge concerning the interrelationships
between variables is contained in the AIP (remember that Graph Tool itself is tasked only

with plotting numbers regardless of origin), it still only refers to such variables by name,
such that additions or deletions from the WSDS-A have no effect on it, and changes in the
way that a variable is calculated generally leave the AIP unaffected as well. .{
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The reason this is nontrivial is that complex programs such as the Force-C models
(and portions of Force-A) can make extensive use of pointers and functions, and even
- though a variable may exist in concept, it may not be represented by an actual program vari-
' able—that is, there is no memory location associated with such an item. Instead, such a
datum is generated as required; the output program must be able to ask things such as “Tell
me the current value pointed to by ___ divided by the number generated by executing the
function ___.”

There are strong tensions between the desire for efficiency and immediate results on
the one hand and software modularity and transparency on the other. In the original RSAS
there was some tilting toward a “first and fastest” approach, but as the system matures we
are moving toward greater modularity with its advantages of maintainability and clarity.
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POSSIBLE GRAPHICS DESIGN FOR FUTURE RSAS
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POSSIBLE GRAPHICS DESIGN FOR FUTURE RSAS

This chart shows the data flow we hope to apply in future versions of the RSAS.
GRAFFER will have disappeared and a new interface called the WSDS-C server will have
emerged. In this system Graph Tool and Map Tool will have access to all Force and decision-
model data via the WSDS-C and WSDS-A servers and the History Server, as coordinated
through the AIP. As discussed above, the system will be quite modular, with changes to one
component having minimal effect on the other components.

The practical significance of these improvements could be substantial for maintainabil-
ity and simplicity as well as increasing the power of the interface as a whole. Many of the
RAND-ABEL/C distinctions that currently cause trouble will no longer be discernible. Unfor-
tunately, moving to such a server will require substantial reprogramming of Force-C, and
thus might not come about for some time, if ever. In the meantime we are incrementally
improving the efficiency of Force-C/RSAS-A communications without restructuring.
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SOURCES OF GRAPHICS DATA IN THE RSAS

TYPE GRAPHIC

History graphs of EDs,
sorties, weapons,

attrition, etc.

Animated FLOT-map

histories

Most snapshot maps
(LOCs, points, choke-
points, FLOTSs, forces,
naval dispositions)

Most bar-chart sum-
maries (e.g., damage
from nuclear attacks)

Conflict-state-by-
theater graphic

Conflict time line

Force-distribution
maps (e.g. worldwide
distribution of US

divisions

Political cooperation
and conflict-level maps

SIOP/RISOP targeting
and target statuses

Rotating globe C3I

node status

THEATER

All

Center Region

or Korea

All

Intercon-
tinental

Global

Global

All

All

intercon-
tinental

All

ORIGIN

OF DATA

CAMPER and

Force-A (mostly

CAMPER

Various

CAMPER

RAND-ABEL
Models

RAND-ABEL
Models

CAMPER

CAMPER

CAMPER

CAMPER

GRAPHICS PROGRAM

Graph Tool
(or GRAFFER)

Map Tool/Graph Tool
combination
(or faster GRAFFER)

Map Tool

Graph Tool

Graph Tool

Graph Tool

GRAFFER

GRAFFER

GRAFFER

GRAFFER
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SOURCES OF GRAPHIC DATA IN THE RSAS

This chart summarizes where the various graphics interfaces in the RSAS obtain their
data. It will be of greatest use after the user is familiar with the displays available, at which
point the chart may be useful in helping the user remember where the data displayed came
from. For example, someone who has been using Graph Tool may wish at some point to see
some strategic nuclear targeting displays that he “can’t find” in the menus for Graph Tool.
As shown on the chart, those displays are generated currently only by GRAFFER.

As a rule of thumb, Graph Tool and Map Tool are sufficient so long as the data come
from the “History file” or from the WSDS-A. Not all Force-C data are maintained in the
History file, however, because the file would become enormous. For example, current infor-
mation on strategic nuclear targeting is data-intensive because there are a very large num-
ber of target types, delivery systems, and weapon allocations.
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DETAIL OF LOGGING-TOOL DATA FLOW

RAND-ABEL
Models
Control Agent

Unfiltered
logs from the
RAND-ABEL
models

Data Editor

/' logging Insfiructlon}s’g
....(log.level for each

H logging
I instructions
" for Force-C
models from
Controt;,
Agent

RAND-ABEL to
Force-C model
interface

'°99ing‘§instructions
(log level-for-each

filtered R
|ogs by EES U :

agent
Force-cw
LogTool Logs

Logging | )
files <




-83-

e inhi

DETAIL OF LOGGING-TOOL DATA FLOW

Here we have a more detailed representation of the RSAS logging system. The user
can specify the level of information to be logged at the outset of the game, and can change
that level at any time during the game for either C or RAND-ABEL variables.! However,
there are additional options available for WSDS-A variables. In particular, the user can ask
to see a file showing, say, only low-level Red Agent log data (roughly speaking, the Red
Agent’s decisions without explanations) even though the underlying log file contains data for
Red, Blue, Green, and Force-A models in whatever maximum level of detail he specified ear-
lier. These filtered logs are quite useful since the unfiltered log data is massive. At some
point in the future the RSAS will have more extensive post-processing options for both the C
and RAND-ABEL sides.

As a side note, although users of the RSAS have been very impressed with the infor-
mation available, one of the relatively few criticisms of the system has been the lack of a
Data Base Management System with which to restructure the output data. The Graph Tool
provides substantial flexibility in creating new displays, but there is no capability in the
RSAS to search out classes of data from the Force logs, for example, other than by the
straighiforward but inelegant procedure of doing text searches using a text editor or UNIX
utility (we have used such procedures in RAND studies). It will not be practical to provide
the additional capabilities until the WSDS-C server (Force server) exists since, once again,
the key issue is having all important information represented as program variables.

n practice, users typically set Force-C log levels by editing the default “use” file in the Run direc-
tory, or by orders placed in Analyst Plans.
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SPECIAL CAPABILITIES FOR SAVING AND BRANCHING

Having completed our discussion of data flow, let us now consider briefly some of the
special features the RSAS has for doing excursions and what are called lookaheads.
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ILLUSTRATIVE SAVING AND BRANCHING WITH RSAS

Simulated Time

s— —————-
0,5 1,3 4
AN B\ D
2
c
6,8 7
E\ F
9
G

Read in initial WSDS, A. Start RSAS.
Save state B; make changes. Continue.
Save final state C.

Re-read state B. Continue.

Save final state D.

Start again with initial WSDS, A. ®
Save state E. Continue.

Save final state F.

Re-read state E; make changes.
Continue to end state G.
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ILLUSTRATIVE SAVING AND BRANCHING WITH THE RSAS

In this Note we don’t say much about the saving and branching features of the RSAS,
but they are both novel and powerful. This chart illustrates some of the many capabilities
they provide. Note that each of the saved states can be used as the start of another ses-

sion—one does not have to rerun from the beginning.

One capability not illustrated here is the ability to store only the changes in the
WSDS-A'’s state relative to a given baseline; the file so produced is called a “delta-WSDS-
A.” Use of delta-WSDS-As can greatly speed multicase analysis, especially when the Data
Editor’s ability to produce delta-WSDS-As directly is exploited. Frequently, a given set of
changes to the RSAS simulation’s initial conditions is stored as a delta-WSDS-A, which
can then be combined with other delta-WSDS-As and used to initialize a particular case.
Unfortunately, because WSDS-C data cannot be stored in a delta~-WSDS-A, the usefulness
of the approach is limited to initial states. In practice, then, one uses a combination of delta-
WSDSs and Analyst Plans or scenario-generator tableaus.
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CONTROL FLOW

In the 1980s it is generally becoming understood that the complex flow charts of
yesteryear are not very useful despite the enormous effort required to produce them. Data-
flow diagrams are generally more informative and to-the-point. However, certain aspects of
control flow are very important since they relate to finer details that influence the fidelity of
the models themselves—data-flow diagrams can leave ambiguity in temporal aspects of the
system. Also, we wish to show programmers how the various control-flow mechanisms
have been implemented in the RSAS.




RSAS CONTROL FLOW

The Force-C models control simulation clock with variable
time step

Decision models act in frozen time

Order of agent moves depends on agent wakeup rules and
polling sequence

After each clock advance, Monitor tests for wakeup
requests

Polling order breaks ties on which agent moves next

Models may act several times during frozen time, reacting
to others moves until decisions are stable

Simulation is not “ping-pong” decisionmaking; can reflect
delays in decisions and information

During lookahead, simulation is in “lookahead time”
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RSAS CONTROL FLOW

This chart summarizes some of the more important aspects of RSAS control flow.
Most of the comments need no elaboration, but we should emphasize that the RSAS does
not have a limitation that many observers assumed it had based upon earlier diagrams of its
control flow. In particular, the RSAS does not assume a simple ping-pong game between
Red and Blue. Red may be acting at a time when it does not yet know some of what Blue has
done or what Blue has already decided to do. In the real world there are delays and limita-
tions of information—Red most definitely does not know what Blue has decided, but rather
can only see some of the results of Blue’s decisions upon the physical world (including diplo-
matic messages directed to Red). Red’s inferences may be wrong.

In a few charts we shall show a picture of how control flow operates; this may make
some of the concepts described here a bit more clear.
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POLLING ORDER IN RSAS CONTROL FLOW

« Default polling order:

— Parent, then children (and children’s children, etc.),
then parent’s siblings

— After wakeup, polling resumes at top-level coprocess;
after last top-level coprocess start over

— [ no one wakes up for full cycle, polling ends (and
Force Agent is run, advancing clock)

« Order of top-level coprocesses: Force-A, Control, Green,
Blue, and Red

» Order of lower-level coprocesses (e.g., SCLs and ACLs) is
variable (see source code)

- System Monitor controls flow of execution; may also have
own wakeup rules, polled after Force Agent but before
Control Agent

» User may use tool displaying coprocess hierarchy (H-Tool)
to poll or execute coprocess out of sequence

NOTE: except for Force-A the order of coprocess polling “should
not” matter if rules are robust.
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POLLING ORDER IN RSAS CONTROL FLOW

As noted above, there has to be a polling-order logic to resolve which agent moves
next when two or more agents both want to move. This logic can be overridden by using the
Hierarchy Tool or H-Tool developed by colleague Mark LaCasse, but this is uncommon; the
baseline logic is shown in this chart.

The next chart, POLLING THE TREE OF RSAS COPROCESSES, will make this
easier to understand.
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POLLING THE TREE OF RSAS COPROCESSES

System Monitor

Force-C ';'.r.l.c.:dels
(CAMPER)

Force-A Control Green Blue Red
NCL NCL
—

AN o

Blue, Red, Green, « .
and Force control Order GCL GCL

ans e
" r\/ /! N f\\

SCL SCL ACL ACL ACL ACL

AAL AP

ACL ACL ACL ACL

lllustrative only.

(Blue and Red may have arbitrary
number of SCL and ACL
coprocesses; Force-A, etc., may
have child coprocesses.)

------------ Force-C models {CAMPER) and System Monitor
are both UNIX processes and can run on
separate machines.
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POLLING THE TREE OF RSAS COPROCESSES

As shown here pictorially, System Monitor is the ultimate “parent” coprocess. At
the next level there are six “siblings” (the Force-C models, Force-A, and so on), most of
which have “children.” The Force-C models are contained in a separate UNIX process from
System Monitor and can therefore be run on a separate CPU if desired. In the current system
the other agents shown are all part of the same UNIX process as System Monitor.

Polling takes place in a depth-first manner—that is, after a given coprocess is polled,
its children (if any) are polled before its sibiings (if any), and the same is done for any chil-
dren of its children, and so on. If any wakeup rules for a polled coprocess indicate that it

should be awakened, that coprocess is run until its next Sleep request, after which polling
resumes at the relevant top-level coprocess (e.g. the Blue NCL is polled after any of the
Blue coprocesses—its descendents—awakens) and continues down the tree. Only when all
coprocesses have declined to awaken does System Monitor turn control over to the Force-C
models. Then the Force-C models perform their combat simulation and advance the game
clock, and the polling cycle repeats.
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ILLUSTRATIVE CONTROL FLOW IN RSAS SIMULATION

Exe- Simu- RED RED’s BLUE BLUE’s GREEN FORCE
:_'_Jt'On lated BLUE RED
ime Time

TO

T2

“real” time simulation

lookahead time

decisionmodeling

/74 simulation in lookahead

decision modeling in lookahead
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ILLUSTRATIVE CONTROL FLOW IN RSAS SIMULATION

This chart shows pictorially how control shifts in the process of several agent moves,
including moves occurring “in lookahead.” The next chart describes the meaning of the steps
in more detail, but basically what is being depicted here is a slice out of a game. At the begin-
ning (1), Force Agent is updating the state of the simulated world—computing the result of
battles and so on. It advances the clock to time T1 and relinquishes control. Red wakes up
(2) and begins a decision process requiring a lookahead simulation. This includes some sim-
ulation by Force (3) and decisions by Red’s models of Green (4, using Red’s parameter val-
ues for the Green models) and Blue (5). After the lookahead, Red completes its deci-
sions(6), Blue moves(7), Green moves (8) and then Red moves again(9). Force Agent then
regains control (10), still at simulated time T1, and the game continues.

The Force Agent’s time steps depend upon circumstances. The nominal time step is
four hours, but it becomes much shorter if there is nuclear use, and even shorter (a few min-
utes) when Red or Blue has tactical warning of an incoming attack on its homeland. The user
or other agents can also request a shorter time step.




ILLUSTRATIVE CONTROL FLOW (CONT’D)

EVENT ACTIVITY

1 Simulation of events in physical world between
simulated time TO to T1

2 Decisionmaking at T1 by Red; Red decides to do
lookahead

3 Red decisionmaking continues: simulation of events
starts at lookahead time LT1

4 Red decisionmaking continues: Green Agent, adjusted
to Red’s assumptions, does decisionmaking in Red’s
lookahead at time LT2

5 Red decisionmaking continues: Red’s Blue does
decisionmaking in lookahead at time LT2

6 Lookahead ends as Red concludes decisionmaking
by evaluating lookahead’s results

7 Blue decisionmaking; we are again in “real time” at
time T1

Green decisionmaking at time T1

More Red decisionmaking, still at time T1

10 Simulation of events in physical world between
simulated time T1 to T2
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ILLUSTRATIVE CONTROL FLOW (CONT’D)

(Already discussed)
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CONTENTS

We shall now discuss certain aspects of the man-machine interface briefly, although
we clearly have touched on many relevant issues already.




MAN-MACHINE ENVIRONMENT

Sun workstations (graphics, windows, networking,
ownership...)

RAND-ABEL language
On-line documentation for many models and tools

RSAS tools
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MAN-MACHINE ENVIRONMENT

This chart shows the elements of the RSAS environment, but we will discuss these
elements here only briefly because they need to be examined first-hand and in most cases
are documented separately and in much more detail than possible here. The next chart lists
the various RSAS tools, but does not discuss them in detail. See the Beginner’'s Manual

(Gillogly, furnished to RSAS sites) and a paper describing the explanation mechanisms of
the RSAS (Davis, 1988).

)




RSAS TOOLS

Interpreter: change RAND-ABEL interactively
Data Editor: view and change RAND-ABEL variables

H-Tool: monitor control flow, manually poll or execute
agents, stop play at chosen point for human decisions

Cross-referencing Tool: declarations and ranges of RAND-
ABEL variables and functions

Logging Tool: provide variable-resolution reports

Source Code Menu Tool: select relevant portion of source
code

CMENT provide nested-menu interface to Force-C models
(CAMPER)

Graphics Tools: maps, history graphs, bar graphs, and
other displays; tools for constructing line and bar graphs
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RSAS TOOLS

This chart lists the most important RSAS tools, all of which are application indepen-
dent. We have discussed most of them already, but let us make a few review comments here.

As a practical matter, being able to change parameters and rules interactively by
using the interpreter, data editor, and CMENT, and being able to review simulation results
and diagnose problems with convenient graphical tools and logging, have proven essential in
making it attractive for analysts to work directly with the RSAS at the work station—using
the system during their creative activities as well as for production. This flexibility is essen-
tial to our concept of what a modern knowledge-based simulation should be.

There are several more minor tools not discussed earlier. One of these is the Hierar-
chy Tool (H-Tool), developed by Mark LaCasse. It displays the hierarchy of coprocesses
and highlights the one currently active. In addition, the user can select one of the H-Tool
“bubbles” and specify that the game suspend activity when the turn of that object comes up,
allowing him to examine or modify the simulation. H-Tool also gives a list of a coprocess’
current wakeup rules, and allows a coprocess to be awakened out of turn.

Another useful tool is the Sourcecode Menu Tool, which has proven quite helpful in
dealing with the hierarchy of sourcecode. Developed by Robert Weissler, this tool consists of
nested menus keyed to the directory and file structure of the RAND-ABEL source code.
Since this structure is identical to the conceptual structure of the RSAS RAND-ABEL mod-
els, the user can easily find model components and learn how they are fitted together. By
selecting a menu item, he can bring up the rule set corresponding to a particular code module.
This facility also allows part or all of the source code hierarchy to be searched for a given
variable or function name or other code fragment.

The Cross Referencing Tool, developed by Sharyne Blixt, is tied to a data base that
cross-indexes the various functions, variables, and values of the RAND-ABEL source code.
Someone writing new RAND-ABEL rules for a given model who has forgotten the permitted
values (or more important, the correct spelling) of existing qualitative variables (e.g., the val-
ues of the variable Strategic-warning or Global-objectives) can use the Cross Referencing
Tool to quickly obtain definitive information on such matters. The Cross Referencing Tool
also allows direct recall of a variable or function declaration in the Data Dictionary; this is
quite useful since the comments there often help explain the meaning of qualitative variables.
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CONTENTS

Next, let us discuss the current status of the RSAS as it appears to the authors. Our
assessment is clearly subjective, but may be useful nonetheless. We shall focus here on
problems, even though we are quite pleased with the current RSAS and its usefulness as it
stands.
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LIMITATIONS AND SHORTCOMINGS

Interfaces to Force-C models depend on details of Force-C
internal programming (i.e., the Force-C models and their
components are not software modules)

Result: inefficient communications between C and RAND-ABEL
programs, degraded performance, complexity, maintenance
problems

The RSAS’s extreme flexibility can be paralyzing: “too many
options;” need to identify narrow, tailored, and simple user
modes

Until completion of the Source Code Data Base facility (late
1988 or early 1989) recompilation of RAND-ABEL programs
involving new variables will be very slow

Changing C programs or displays, or verifying model details,
requires expertise in C/UNIX and the RSAS

Numerous bugs likely in models not yet used in serious study
efforts (much of the RSA.S)

Force-C logs and displays inadequate for simple calculational
audits; RAND-ABEL models better, but have room for
improvement

Significant differences exist between C- and RAND-ABEL-side
interfaces, increasing cognitive burden for user

WSDS saving and reading mechanisms appear fragile, with
occasional “no-reason” failures; re-implementation of
coprocess save mechanism will eventually be desired

Various features not yet implemented: e.g., much of CMENT’s
interfaces and full-feature Cross Referencing Tool

Non-uniform HELP procedures
Some user interfaces not fully documented
RAND-ABEL recompilations can be complicated




- 109 -

LIMITATIONS AND SHORTCOMINGS

In this chart we summarize the problems we know exist and consider the most impor-
tant. Little discussion is necessary.

By far the most serious problems relate to the interface between RAND-ABEL and
C models. Some of the very features that make C powerful and efficient for the global RSAS
simulation (e.g., untyped pointers) make interfacing to C data difficult. We recognized that
this would be the case, but were unable to move toward a more fully integrated system until
completion of RSAS 3.0.
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SELECTED COMMENTS ON RSAS AS SOFTWARE

- Extremely interactive and flexible, but correspondingly
complex

« Unique worldwide for complexity management in very large
knowledge-based simulation

« Models have more than 150,000 lines each of RAND-ABEL and
C (RAND-ABEL part translates into about 450,000 lines of C);
interfaces and other supporting software approximately
double the total figure

- Operates on Berkeley 4.x UNIX systems with 68000-series
CPU; other UNIXes or CPUs would require a moderate
amount of model and non-interface support software
reprogramming

- Exploits Sun workstation tools. Reprogramming of interface
would be necessary for other hardware

* Minimum hardware: 12MB RAM, 60MB virtual address space,
280MB mass storage
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SELECTED COMMENTS ON RSAS AS SOFTWARE

The first thing to be said in a net assessment of the RSAS as software is that it is
extremely interactive and flexible, as intended. It is also very complex. To say the RSAS is
user-friendly as of August 1988 would be a significant exaggeration, because the substan-
tive content and sophistication of the RSAS has increased rapidly as the techniques for com-
prehending complex interactions have improved. Users of the RSAS routinely do things (with
some difficulty) that would not even have been arzempted previously.

So far as we know, there is no comparable system anywhere in the world. There are
rich literatures on expert systems and simulation, but knowledge-based simulation is new
and the other systems of which we are aware have been much less ambitious. The methods
used in the majority of academic studies of related technology (e.g., expert systems) simply
cannot cope well with very large and complex systems in which there are thousands of rules
and large numbers of interacting objects.

Measuring programs is notoriously difficult, but using the most common measure, the
RSA3 models have more than 150,000 lines each of C and RAND-ABEL. However, our
extensive use of RAND-ABEL tables, which are a particularly dense form of code, means
the RAND-ABEL part of the RSAS translates into about 450,000 lines of C. The run time for
the RSAS on a Sun 3/60 workstation varies from tens of seconds to a few minutes per day of
simulated crisis and conflict, depending on how many theaters are being simulated, whether
the political decision models are being employed, log levels, and so on. A global war game
can be conducted in about 1-3 hours. Analysts can usually diagnose results (except for prob-
lems due to bugs in the C programs) within minutes—or perhaps tens of minutes in bad
cases. This may require consultation with other analysts or programmers, however, because
none of us currently are expert in all the various models and data bases—in terms of either
substance or software. Thus for all but highly focused applications of the RSAS, effective use
demands having a team of analysts and programmers.

The RSAS is a large collection of interacting software, and to use it effectively we
strongly recommend that users have at minimum 12 MB of physical memory, at least 60 MB
of virtual memory, and 280 MB of mass storage. Although the RSAS will run on smaller sys-
tems, performance penalties can be severe and can substantially reduce the productivity and
case-of-use of the system. The issue here is not just speed, but also the ability to use multi-
ple tools simultaneously, record intermediate world states and come back to them, store mul-
tiple history files and logs, and so on. In this day and age it is unreasonable to have analysts
wasting their time worrying over storage and memory use when hardware costs are far lower
than analyst costs.
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CONTENTS

It seems appropriate to conclude with a list of references for various aspects of the
RSAS; also, following the appendix there is an annotated bibliography and some comments
on which references are the most useful.

)




REFERENCES

MODELS

« Existing references somewhat outdated, but useful for
background. See Davis and Winnefeld (1983)

- Davis, Bankes, and Kahan (1986); Davis (1985)

- For discussion of Main Theater Force models, see Bennett,
Jones, Bullock, and Davis (forthcoming)

RELATIONSHIP TO ARTIFICIAL INTELLIGENCE 4
« See Davis (1985)

RAND-ABEL LANGUAGE

- For rationale, see Shapiro, Hall, Anderson, and LaCasse
(1985)

» For reterence manual, see Shapiro, et al. (1988)

RSAS ENVIRONMENT

- For a beginner’s guide, see Gillogly (furnished to RSAS
sites)

» For RAND-ABEL model explanation mechanisms, see Davis
(1988) -

TOOLS AND INTERFACES

» See on-line documentation (under main menu item Doc) =
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Appendix
TERMINOLOGICAL EQUIVALENCES

Ignoring the distinction between models and programs, the following equivalences hold:

RSAS-C = CAMPER

Force-C = CAMPER + related data bases and tools

Force-A = S-LAND’s referee model + flag model + other

Force Agent = CAMPAIGN

CAMPAIGN = CAMPAIGN-MT + CAMPAIGN-ALT + other force models
CAMPAIGN = CAMPAIGN-MT + CAMPAIGN-ALT (S-LAND)+ other force models

Common incorrect (i.e. obsolete) terminology one may hear or see in older publications:

e  “Force” to mean “Force-C” or the Force-C models
« “CAMPAIGN” to mean “CAMPAIGN-MT”
*  “WSDS” to mean “WSDS-A”

* “Force Server” to mean the interface between Force-C and the RAND-ABEL models.
The interface is not a true data server.

» “Agents” excluding Force-C models (i.e. failing to include non-RAND-ABEL entities)
» “Agents” to mean those models not part of CAMPAIGN




- 117 -

ANNOTATED BIBLIOGRAPHY

Allen, Patrick D., and Barry A. Wilson, Secondary Land Theater Model, The RAND
Corporation, N-2625-NA, July 1987. The S-Land model exploits the RAND-ABEL language
in making it possible to develop theater-level models quickly. It can be used also to develop
specialized models for main theaters.

Bennett, Bruce W., Carl M. Jones, Arthur M. Bullock, and Paul K. Davis, Main Theater
Warfare Modeling in the RAND Strategy Assessment System, The RAND Corporation,
N-2743-NA , forthcoming. A fairly detailed overview of the models used primarily for
Europe’s Central Region.

Davis, Paul K., Applying Artificial Intelligence Techniques to Strategic-Level Gaming and
Simulation, The RAND Corporation, P-7120, November 1985 (reprinted as N-2752-RC,
March 1988). Published also as a chapter in M. S. Elzas, T. I. Oren, and B. P. Zeigler (eds.),
Modeling and Simulation Methodology in the Artificial Intelligence Era, Elsevier Science
Publishers B. V., North-Holland, 1986.

Davis, Paul K., Explanation Mechanisms for Knowledge-Based Models in the RAND
Strategy Assessment System , The RAND Corporation, N-2711-NA, August 1988.

Davis, Paul K., A New Analytic Technique for the Study of Deterrence, Escalation Control,
and War Termination, The RAND Corporation, P-7224, May 1986. Also published as a
chapter in Stephen J. Cimbala (ed.), Artificial Intelligence and National Security, Lexington
Books, D.C. Heath and Company, Lexington, MA 1987. Describes applications of NCL
models.

Davis, Paul K., Steven C. Bankes, and James P. Kahan, A New Methodology for Modeling
National Command Level Decisionmaking in War Games and Simulations, The RAND
Corporation, R-3290-NA, July 1986.

Davis, Paul K. and James A. Winnefeld, The RAND Strategy Assessment Center: An
Overview and Interim Conclusions about Potential Utility and Development Options, The
RAND Corporation, R-2945-DNA, March 1983. Now obsolete except for background on
original concepts.

Gillogly, Marrietta, A Beginner's Manual for the RAND Strategy Assessment System, an
unpublished draft manual available only to RSAS government agencies with the RSAS.




-118 -

Goldberg, Adele, and Alan Kay, Smallralk-72 Instruction Manual, SSL 76-6, Xerox PARC,
Palo Alto, CA, 1976.

Graubard, Morlie H., and Carl H. Builder, RAND's Strategic Assessment Center: An
Overview of the Concept, The RAND Corporation, N-1583-DNA, September 1980.

Knuth, Donald, The Art of Computer Programming, 2nd ed., Addison Wesley Publishing Co.,
Reading, MA, 1973.

Klahr, Philip, and W. S. Faught, “Knowledge-Based Simulation,” Proceedings of the First
Annual National Conference on Artificial Intelligence, Palo Alto, 1980. One of the earliest
references to knowledge-based simulation based on work at RAND.

LaCasse, Jean, Reference Manual for the RSAS Data Editor, The RAND Corporation,
forthcoming.

LaCasse, Jean, Defining Displays for the RSAS Data Editor, The RAND Corporation,
forthcoming.

McArthur, D., and Philip Klahr, The ROSS Language Manual, The RAND Corporation,
N-1854-AF, September 1982.

Oren, Tuncer, and Bernard P. Zeigler, “Artificial Intelligence in Modeling and Simulation:
Directions to Explore,” Simulation, Vol. 48, No. 4, April 1987. Summarizes major directions
briefly and provides guide to recent academic literature.

Reddy, Ramana, “Epistemology of Knowledge Based Simulation,” Simulation, Vol. 48,
No. 4, April 1987. A good general discussion; also references Reddy’s and colleagues’ early
(circa 1981) work on the subject.

Schwabe, William, Strategic Analysis as Though Nonsuperpowers Matter, The RAND
Corporation, N-1997-NDNA, June 1983 (a dissertation for the RAND Graduate School, this
describes the motivation behind Green Agent, then called Scenario Agent).

Shapiro, Norman, H. Edward Hall, Robert Anderson, Mark LaCasse, Marrietta Gillogly, and
Robert Weissler, The RAND-ABEL Programming Language: Reference Manual, The RAND
Corporation, N-2367-1-NA, forthcoming (this is a revision of a 1985 document).

Shapiro, Norman, H. Edward Hall, Robert Anderson, and Mark LaCasse, The RAND-ABEL
Programming Language: History, Rationale and Design, The RAND Corporation,
R-3274-NA August 1985.




-119-

Shlapak, David A., William L. Schwabe, Mark A. Lorell, and Yoav Ben-Horin, The RAND
Strategy Assessment System’s Green Agent Model of Third-Country Behavior in Superpower
Crises and Conflict, The RAND Corporation, N-2363-1-NA, September 1986. See also the
1988 user’s manual for the Green Agent written by David Shlapak (an unpublished draft
available only to government agencies possessing the RSAS).

Steeb, Randall, and James Gillogly, Design for an Advanced Red Agent for the RAND
Strategy Assessment Center, The RAND Corporation, R-2977-DNA, 1983.

Zeigler, Barnard P., “Toward a Simulation Methodology for Variable Structure Modeling,” in
M. S. Elzas, T. 1. Oren, and B. P. Zeigler (eds.), Modeling and Simulation Methodology in
the Artificial Intelligence Era, Elsevier Science Publishers B. V., North Holland, 1986.




